Mass-enhanced Fermi-liquid ground state in Na1.5Co2O4

Magnetic, transport, and specific-heat measurements have been performed on layered metallic oxide Na 1 . 5 Co 2 O 4 as a function of temperature T. Below a characteristic temperature T*=30-40 K, electrical resistivity showsa metallic conductivity with a T 2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at ∼14 K. The electronic specific-heat coefficient y is ∼60 mJ/mol K 2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi-liquid ground state analogous to that in d-electron heavy fermion compound LiV 2 O 4 .

[1]  P. Coleman,et al.  LiV2O4: frustration induced heavy fermion metal. , 2002, Physical review letters.

[2]  K. Miyoshi,et al.  Magnetic and calorimetric studies of Li(V1-xMx)2O4 (M = Cr, Ti) spinel compounds , 2002 .

[3]  Y. Yamamura,et al.  First-order phase transition inNa1.5Co2O4 , 2002 .

[4]  D. Grempel,et al.  Heavy-fermion and spin-liquid behavior in a Kondo lattice with magnetic frustration , 2001, cond-mat/0107288.

[5]  C. Lacroix Heavy-fermion behavior of itinerant frustrated systems: β-Mn, Y(Sc)Mn2, and LiV2O4 , 2001 .

[6]  T. Motohashi,et al.  Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4 by controlling Na nonstoichiometry , 2001 .

[7]  Y. Qiu,et al.  Spin fluctuations in a magnetically frustrated metal LiV(2)O(4). , 2001, Physical review letters.

[8]  Takagi,et al.  LiV2O4 spinel as a heavy-mass fermi liquid: anomalous transport and role of geometrical frustration , 2000, Physical review letters.

[9]  David J. Singh Electronic structure of NaCo 2 O 4 , 2000 .

[10]  I. Terasaki,et al.  Na-site substitution effects on the thermoelectric properties of NaCo 2 O 4 , 1999 .

[11]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[12]  R. Ray,et al.  59 Co NMR studies of metallic NaCo 2 O 4 , 1999 .

[13]  T. Pruschke,et al.  The electronic structure of the heavy fermion metal $LiV_2O_4$ , 1999, cond-mat/9903372.

[14]  D. Johnston,et al.  Synthesis, characterization, and magnetic susceptibility of the heavy-fermion transition-metal oxide LiV 2 O 4 , 1998, cond-mat/9812020.

[15]  D. Johnston,et al.  Specific heat (1.2{endash}108 K) and thermal expansion (4.4{endash}297 K) measurements of the 3d heavy-fermion compound LiV{sub 2}O{sub 4} , 1998, cond-mat/9811411.

[16]  D. Johnston,et al.  Li-7 and V-51 NMR study of the heavy-fermion compound LiV2O4 , 1998 .

[17]  Y. Ueda,et al.  ANOMALOUS SPIN FLUCTUATION IN VANADIUM SPINEL LIV2O4STUDIED BY 7LI-NMR , 1998 .

[18]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[19]  M. Onoda,et al.  Spin fluctuation and the transport mechanism in vanadium oxide spinels with a metal-insulator transition , 1997 .

[20]  E. J. Freeman,et al.  LiV{sub 2}O{sub 4}: A Heavy Fermion Transition Metal Oxide , 1997 .

[21]  Y. Ueda,et al.  Magnetic and Structural Transitions in (Li_xZn V_2O_4 with the Spinel Structure , 1997 .

[22]  Shin Nakamura,et al.  Observation of Distinct Metallic Conductivity in NaCo2O4 , 1994 .

[23]  M. Shiga,et al.  Spin Liquid Behavior of Highly Frustrated Y(Sc)Mn 2 and Effects of Nonmagnetic Impurity , 1993 .

[24]  Kim,et al.  CeCu4Al and CeCu2Zn2Al: Very-heavy-fermion systems in high magnetic fields. , 1991, Physical review. B, Condensed matter.

[25]  Y. Maeno,et al.  Anisotropic specific heat of CeCu6 in magnetic fields , 1985 .

[26]  V. T. Rajan Magnetic Susceptibility and Specific Heat of the Coqblin-Schrieffer Model , 1983 .

[27]  H. Desgranges,et al.  Specific heat of the Kondo model , 1982 .

[28]  K. Kumagai,et al.  Effect of Spin Fluctuations on the Specific Heat in βMn Metal and Alloys , 1979 .

[29]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .