The high mobility group box: the ultimate utility player of a cell.

[1]  S. Lippard,et al.  Binding interaction of HMGB4 with cisplatin-modified DNA. , 2012, Biochemistry.

[2]  E. Crouser,et al.  Mitochondrial Transcription Factor A Serves as a Danger Signal by Augmenting Plasmacytoid Dendritic Cell Responses to DNA , 2012, The Journal of Immunology.

[3]  D. LeBrun,et al.  E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. , 2012, Biochimica et biophysica acta.

[4]  Prasanna R Kolatkar,et al.  The crystal structure of the Sox4 HMG domain-DNA complex suggests a mechanism for positional interdependence in DNA recognition. , 2012, The Biochemical journal.

[5]  E. Peterman,et al.  Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A , 2012, Nature Communications.

[6]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[7]  M. Churchill,et al.  Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA , 2011, Nucleic acids research.

[8]  D. Chan,et al.  TFAM imposes a U-turn on mitochondrial DNA , 2011 .

[9]  Pau Bernadó,et al.  Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter , 2011, Nature Structural &Molecular Biology.

[10]  Jiaxuan Chen,et al.  Conversion of Sox17 into a Pluripotency Reprogramming Factor by Reengineering Its Association with Oct4 on DNA , 2011, Stem cells.

[11]  I. Ugrinova,et al.  The DNA Binding and Bending Activities of Truncated Tail-less HMGB1 protein are Differentially Affected by Lys-2 and Lys-81 Residues and Their Acetylation , 2011, International journal of biological sciences.

[12]  G. Stormo,et al.  Quantitative analysis demonstrates most transcription factors require only simple models of specificity , 2011, Nature Biotechnology.

[13]  I. Ugrinova,et al.  Cyclin-dependent kinase 5 phosphorylates mammalian HMGB1 protein only if acetylated. , 2011, Journal of biochemistry.

[14]  M. Lotze,et al.  High-mobility group box 1, oxidative stress, and disease. , 2011, Antioxidants & redox signaling.

[15]  K. Luger,et al.  The Histone Chaperone FACT: Structural Insights and Mechanisms for Nucleosome Reorganization* , 2011, The Journal of Biological Chemistry.

[16]  K. Tracey,et al.  HMGB1 is a therapeutic target for sterile inflammation and infection. , 2011, Annual review of immunology.

[17]  V. Deretic Autophagy in immunity and cell‐autonomous defense against intracellular microbes , 2011, Immunological reviews.

[18]  G. Crabtree,et al.  ATP-dependent chromatin remodeling: genetics, genomics and mechanisms , 2011, Cell Research.

[19]  M. Lotze,et al.  The Beclin 1 network regulates autophagy and apoptosis , 2011, Cell Death and Differentiation.

[20]  S. Lippard,et al.  Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA. , 2011, Biochemistry.

[21]  M. Churchill,et al.  Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending. , 2010, Journal of molecular biology.

[22]  Jason P. Zlotnicki,et al.  High Mobility Group Box 1 Release from Hepatocytes during Ischemia and Reperfusion Injury Is Mediated by Decreased Histone Deacetylase Activity* , 2010, The Journal of Biological Chemistry.

[23]  K. Tracey,et al.  HMGB1 Release and Redox Regulates Autophagy and Apoptosis in Cancer Cells , 2010, Oncogene.

[24]  S. Akira,et al.  A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release , 2010, Proceedings of the National Academy of Sciences.

[25]  R. Mann,et al.  Origins of specificity in protein-DNA recognition. , 2010, Annual review of biochemistry.

[26]  H. Kondoh,et al.  SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms. , 2010, The international journal of biochemistry & cell biology.

[27]  M. Štros HMGB proteins: interactions with DNA and chromatin. , 2010, Biochimica et biophysica acta.

[28]  D. Stillman Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. , 2010, Biochimica et biophysica acta.

[29]  G. Manfioletti,et al.  HMGA molecular network: From transcriptional regulation to chromatin remodeling. , 2010, Biochimica et biophysica acta.

[30]  G. Gerlitz HMGNs, DNA repair and cancer. , 2010, Biochimica et biophysica acta.

[31]  R. Reeves Nuclear functions of the HMG proteins. , 2010, Biochimica et biophysica acta.

[32]  A. Fersht,et al.  Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53 , 2009, Nucleic acids research.

[33]  S. Kadam,et al.  Acetylation of Sox2 Induces its Nuclear Export in Embryonic Stem Cells , 2009, Stem cells.

[34]  P. Privalov,et al.  The cost of DNA bending. , 2009, Trends in biochemical sciences.

[35]  D. Stillman,et al.  yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. , 2009, Molecular cell.

[36]  K. Morikawa,et al.  Phosphorylated Intrinsically Disordered Region of FACT Masks Its Nucleosomal DNA Binding Elements* , 2009, The Journal of Biological Chemistry.

[37]  Daniel E. Newburger,et al.  Diversity and Complexity in DNA Recognition by Transcription Factors , 2009, Science.

[38]  Prasanna R Kolatkar,et al.  The structure of Sox17 bound to DNA reveals a conserved bending topology but selective protein interaction platforms. , 2009, Journal of molecular biology.

[39]  J. Nix,et al.  Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A , 2009, Nucleic acids research.

[40]  T. Grundström,et al.  Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling , 2009, Proceedings of the National Academy of Sciences.

[41]  Debashish Sahu,et al.  Redox properties of the A‐domain of the HMGB1 protein , 2008, FEBS letters.

[42]  V. Harley,et al.  Boys, girls and shuttling of SRY and SOX9 , 2008, Trends in Endocrinology & Metabolism.

[43]  D. Edwards,et al.  Mechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding , 2008, Nucleic acids research.

[44]  Aaron M. Zorn,et al.  Sox17 and Sox4 Differentially Regulate β-Catenin/T-Cell Factor Activity and Proliferation of Colon Carcinoma Cells , 2007, Molecular and Cellular Biology.

[45]  Santiago Costantino,et al.  The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. , 2007, Molecular biology of the cell.

[46]  I. Ito,et al.  Post-translational Methylation of High Mobility Group Box 1 (HMGB1) Causes Its Cytoplasmic Localization in Neutrophils* , 2007, Journal of Biological Chemistry.

[47]  C. Gustafsson,et al.  Mitochondrial transcription and its regulation in mammalian cells. , 2007, Trends in biochemical sciences.

[48]  Haichao Wang,et al.  Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1 , 2007, Journal of leukocyte biology.

[49]  J. Stuart,et al.  DNA repair and cancer. , 2007 .

[50]  V. Lefebvre,et al.  Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. , 2007, The international journal of biochemistry & cell biology.

[51]  D. A. Clayton,et al.  Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. , 2006, Molecular cell.

[52]  M. Waterman,et al.  Diversity of LEF/TCF action in development and disease , 2006, Oncogene.

[53]  Katherine E. Talcott,et al.  Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. , 2006, Experimental cell research.

[54]  K. Stott,et al.  Structure of a complex of tandem HMG boxes and DNA. , 2006, Journal of molecular biology.

[55]  M. Bianchi,et al.  HMG proteins: dynamic players in gene regulation and differentiation. , 2005, Current opinion in genetics & development.

[56]  J. Russell,et al.  RNA-polymerase-I-directed rDNA transcription, life and works. , 2005, Trends in biochemical sciences.

[57]  S. Müller,et al.  HMGB1 is an endogenous immune adjuvant released by necrotic cells , 2004, EMBO reports.

[58]  J. Wojcik,et al.  Functional proteomics mapping of a human signaling pathway. , 2004, Genome research.

[59]  G. Längst,et al.  Nucleosome remodeling: one mechanism, many phenomena? , 2004, Biochimica et biophysica acta.

[60]  E. Abraham,et al.  Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein* , 2004, Journal of Biological Chemistry.

[61]  G. Marius Clore,et al.  Molecular Basis for Synergistic Transcriptional Activation by Oct1 and Sox2 Revealed from the Solution Structure of the 42-kDa Oct1·Sox2·Hoxb1-DNA Ternary Transcription Factor Complex* , 2004, Journal of Biological Chemistry.

[62]  Tiziana Bonaldi,et al.  Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion , 2003, The EMBO journal.

[63]  Matthias Wilmanns,et al.  Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. , 2003, Genes & development.

[64]  N. Hamasaki,et al.  Human mitochondrial DNA is packaged with TFAM. , 2003, Nucleic acids research.

[65]  James E Masse,et al.  The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. , 2002, Journal of molecular biology.

[66]  T. Misteli,et al.  Release of chromatin protein HMGB1 by necrotic cells triggers inflammation , 2002, Nature.

[67]  J. Armengaud,et al.  In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures. , 2001, Biochemistry.

[68]  S. Knapp,et al.  Thermodynamics of HMGB1 interaction with duplex DNA. , 2001, Biochemistry.

[69]  J. O. Thomas,et al.  HMG1 and 2: architectural DNA-binding proteins. , 2001, Biochemical Society transactions.

[70]  M. Bustin Revised nomenclature for high mobility group (HMG) chromosomal proteins. , 2001, Trends in biochemical sciences.

[71]  A. Travers,et al.  HMG1 and 2, and related 'architectural' DNA-binding proteins. , 2001, Trends in biochemical sciences.

[72]  A. Sepulveda,et al.  Identification of a Second MutL DNA Mismatch Repair Complex (hPMS1 and hMLH1) in Human Epithelial Cells* , 2000, The Journal of Biological Chemistry.

[73]  F. Murphy,et al.  Nonsequence-specific DNA recognition: a structural perspective. , 2000, Structure.

[74]  R M Sweet,et al.  The structure of a chromosomal high mobility group protein–DNA complex reveals sequence‐neutral mechanisms important for non‐sequence‐specific DNA recognition , 1999, The EMBO journal.

[75]  K. Tracey,et al.  HMG-1 as a late mediator of endotoxin lethality in mice. , 1999, Science.

[76]  C. Pabo,et al.  Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins , 1999, Nature.

[77]  V. Laudet,et al.  Diversification Pattern of the HMG and SOX Family Members During Evolution , 1999, Journal of Molecular Evolution.

[78]  M. Churchill,et al.  Interactions of high mobility group box proteins with DNA and chromatin. , 1999, Methods in enzymology.

[79]  J. Thornton,et al.  NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. , 1997, Nucleic acids research.

[80]  D. Ambrosetti,et al.  Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites , 1997, Molecular and cellular biology.

[81]  M. Churchill,et al.  Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG‐D , 1997, FEBS letters.

[82]  N. Corbi,et al.  Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. , 1995, Genes & development.

[83]  A. Gronenborn,et al.  Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex , 1995, Cell.

[84]  D. A. Clayton,et al.  Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. , 1995, Journal of molecular biology.

[85]  R Grosschedl,et al.  HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. , 1994, Trends in genetics : TIG.

[86]  D. Landsman,et al.  A signature for the HMG‐1 box DNA‐binding proteins , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[87]  P. Kraulis,et al.  Structure of the HMG box motif in the B‐domain of HMG1. , 1993, The EMBO journal.

[88]  R. Lovell-Badge,et al.  Expression of a candidate sex-determining gene during mouse testis differentiation , 1990, Nature.

[89]  D. A. Clayton,et al.  Purification and characterization of human mitochondrial transcription factor 1 , 1988, Molecular and cellular biology.

[90]  G. Goodwin,et al.  A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. , 1973, European journal of biochemistry.