In Situ Straining Experiments: Examples of Results

[1]  D. Caillard,et al.  Dislocation climb and low-temperature plasticity of an Al–Pd–Mn quasicrystal , 2003 .

[2]  M. Jouiad,et al.  Local disordering and reordering phenomena induced by mobile dislocations in short-range-ordered solid solutions , 2002 .

[3]  H. Kirchner,et al.  Local order in industrial and model γ phases of superalloys , 2001 .

[4]  C. Levade,et al.  Dislocation mobility and electronic effects in semiconductor compounds , 2001, Journal of microscopy.

[5]  D. Gratias,et al.  Transmission electron microscopy study of dislocations and extended defects in as-grown icosahedral Al-Pd-Mn single grains , 2000 .

[6]  A. Couret An in-situ study of ordinary dislocation glide in γ-TiAl alloys , 1999 .

[7]  I. Jones,et al.  Dislocation processes during the plastic deformation of γ-TiAl , 1999 .

[8]  A. Couret,et al.  Pinning points anchoring ordinary and Shockley dislocations in TiAl alloys , 1998 .

[9]  D. Dimiduk,et al.  The geometry and nature of pinning points of ½ 〈110] unit dislocations in binary TiAl alloys , 1997 .

[10]  M. Casanove,et al.  Determination of precipitate strength in aluminium alloy 6056-T6 from transmission electron microscopy in situ straining data , 1997 .

[11]  A. Couret,et al.  Peierls friction stresses and dynamic strain ageing in TiAl and Fe-30at.% Al alloys , 1997 .

[12]  I. Yonenaga,et al.  Mechanical Properties and Dislocation Dynamics in III-V Compounds , 1997 .

[13]  D. Dimiduk,et al.  Atomistics simulations of structures and properties of ½⟨110⟩ dislocations using three different embedded-atom method potentials fit to γ-TiAl , 1997 .

[14]  A. Menand,et al.  Interstitial solubility in γ and α2 phases of TiAl-based alloys , 1996 .

[15]  D. Caillard,et al.  Prismatic and basal slip in Ti3Al I. Frictional forces on dislocations , 1996 .

[16]  M. Morris Dislocation mobility, ductility and anomalous strengthening of two-phase TiAl alloys: effects of oxygen and composition , 1996 .

[17]  A. Couret,et al.  Prismatic and basal slip in Ti3Al II. Dislocation interactions and cross-slip processes , 1996 .

[18]  V. Vítek,et al.  Deformation mechanisms of near-stoichiometric single phase TiAl single crystals: A combined experimental and atomistic modeling study , 1995 .

[19]  A. Couret,et al.  A new model for the peak of activation area of α titanium , 1995 .

[20]  K. Hemker,et al.  Modelling the flow stress anomaly in γ-TiAl I. Experimental observations of dislocation mechanisms , 1995 .

[21]  M. Wollgarten,et al.  In-situ observation of dislocation motion in icosahedral Al-Pd-Mn single quasicrystals , 1995 .

[22]  I. Jones,et al.  Dislocation Motion in λ Tial Studied by in situ Straining Experiments in the Hvem , 1994 .

[23]  Köster,et al.  Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. , 1993, Physical review letters.

[24]  C. Levade,et al.  In situ TEM study of dislocation mobility in semiconducting materials , 1993 .

[25]  A. Couret,et al.  Glide sequences of deformation in the {111} plane of Ni3Ga single crystals in the yield stress anomaly , 1993 .

[26]  D. Caillard,et al.  In situ observation of edge and screw dislocations gliding in cube planes of Ni3Al , 1992 .

[27]  D. Caillard,et al.  Dislocation mechanisms in Ni3Al at room temperature. In situ straining experiments in TEM , 1991 .

[28]  Ze Zhang,et al.  On the determination of the Burgers vector of quasicrystal dislocations by transmission electron microscopy , 1991 .

[29]  V. Vítek,et al.  Core structure of ⅓〈1120〉 screw dislocations on basal and prismatic planes in h.c.p. metals: An atomistic study , 1991 .

[30]  A. Couret,et al.  Prismatic slip in beryllium: II The origin of the strength anomaly , 1989 .

[31]  A. Couret,et al.  Prismatic slip in beryllium: I. The controlling mechanism at the peak temperature , 1989 .

[32]  Y. Bréchet,et al.  Investigation of dislocation mobilities in germanium in the low-temperature range by in situ straining experiments , 1988 .

[33]  J. Beuers,et al.  The dislocation structure in beryllium single crystals deformed by prismatic slip , 1987 .

[34]  A. Couret,et al.  A TEM in situ study of dislocation glide in a III-V compound (InSb) , 1987 .

[35]  A. Couret,et al.  An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism , 1985 .

[36]  A. Couret,et al.  An in situ study of prismatic glide in magnesium—II. Microscopic activation parameters , 1985 .

[37]  J. Martín,et al.  Microstructural dependence of effective stresses and activation volumes during creep , 1984 .

[38]  P. Hazzledine,et al.  The Application of the Wulff Construction to Dislocation Problems , 1984 .

[39]  F. Louchet On the mobility of dislocations in silicon by in situ straining in a high-voltage electron microscope , 1981 .

[40]  L. Kubin,et al.  In situ deformation of b.c.c. crystals at low temperatures in a high-voltage electron microscope Dislocation mechanisms and strain-rate equation , 1979 .

[41]  W. Schröter,et al.  Velocities of Screw and 60°-Dislocations in Silicon , 1972 .

[42]  H. Saka,et al.  Direct Observation of Multiplication of Dislocations in Iron Single Crystal by High Voltage Electron Microscopy (HVEM) , 1970 .

[43]  E. Furubayashi Behavior of Dislocations in Fe-3% Si under Stress , 1969 .

[44]  H. Mughrabi Electron microscope observations on the dislocation arrangement in deformed copper single crystals in the stress-applied state , 1968 .

[45]  B. Escaig L'activation thermique des déviations sous faibles contraintes dans les structures h.c. et c.c. Par , 1968 .

[46]  D. Vesely The Study of Deformation of Thin Foils of Mo under the Electron Microscope , 1968 .

[47]  V. Vítek Thermally activated motion of screw dislocations in B.C.C. metals , 1966 .

[48]  F. Nabarro Dislocations in a simple cubic lattice , 1947 .

[49]  R. Peierls The size of a dislocation , 1940 .