Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis

Summary.The numerical solution of elliptic boundary value problems with finite element methods requires the approximation of given Dirichlet data uD by functions uD,h in the trace space of a finite element space on ΓD. In this paper, quantitative a priori and a posteriori estimates are presented for two choices of uD,h, namely the nodal interpolation and the orthogonal projection in L2(ΓD) onto the trace space. Two corresponding extension operators allow for an estimate of the boundary data approximation in global H1 and L2 a priori and a posteriori error estimates. The results imply that the orthogonal projection leads to better estimates in the sense that the influence of the approximation error on the estimates is of higher order than for the nodal interpolation.

[1]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[2]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[3]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[4]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[7]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[10]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[11]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[12]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[13]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[14]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[15]  JAMES H. BRAMBLE,et al.  ON THE STABILITY OF THE L PROJECTION IN H(Ω) , 2001 .

[16]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[17]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[18]  R. Scott Interpolated Boundary Conditions in the Finite Element Method , 1975 .

[19]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .