Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis
暂无分享,去创建一个
[1] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[2] Carsten Carstensen,et al. A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.
[3] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[4] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[5] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[6] Willy Dörfler,et al. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..
[7] Carsten Carstensen,et al. An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[10] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[11] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[12] Carsten Carstensen,et al. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.
[13] I. Babuska,et al. The finite element method and its reliability , 2001 .
[14] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[15] JAMES H. BRAMBLE,et al. ON THE STABILITY OF THE L PROJECTION IN H(Ω) , 2001 .
[16] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[17] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[18] R. Scott. Interpolated Boundary Conditions in the Finite Element Method , 1975 .
[19] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .