Continuous Intersection Joins Over Moving Objects

The continuous intersection join query is computationally expensive yet important for various applications on moving objects. No previous study has specifically addressed this query type. We can adopt a naive algorithm or extend an existing technique (TP-Join) to process the query. However, they compute the answer for either too long or too short a time interval, which results in either a very large computation cost per object update or too frequent answer updates, respectively. This motivates us to optimize the query processing in the time dimension. In this study, we achieve this optimization by introducing the new concept of time-constrained (TC) processing. Further, TC processing enables a set of effective improvement techniques on traditional intersection join algorithms. With a thorough experimental study, we show that our algorithm outperforms the best adapted existing solution by several orders of magnitude.

[1]  Jianliang Xu,et al.  A generic framework for monitoring continuous spatial queries over moving objects , 2005, SIGMOD '05.

[2]  Yufei Tao,et al.  Time-parameterized queries in spatio-temporal databases , 2002, SIGMOD '02.

[3]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[4]  Hanan Samet,et al.  Maintenance of Spatial Semijoin Queries on Moving Points , 2004, VLDB.

[5]  Christian S. Jensen,et al.  Nearest and reverse nearest neighbor queries for moving objects , 2006, The VLDB Journal.

[6]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[7]  Richard M. Fujimoto,et al.  PROCEEDINGS OF THE 1997 WINTER SIMULATION CONFERENCE , 1997 .

[8]  Ming-Ling Lo,et al.  Spatial joins using seeded trees , 1994, SIGMOD '94.

[9]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[10]  Beng Chin Ooi,et al.  Query and Update Efficient B+-Tree Based Indexing of Moving Objects , 2004, VLDB.

[11]  Katherine L. Morse,et al.  Interest Management in Large-Scale Distributed Simulations , 1996 .

[12]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[13]  Hanan Samet,et al.  Maintenance of K-nn and spatial join queries on continuously moving points , 2006, TODS.

[14]  Christian S. Jensen,et al.  Lopez: "Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD 2000.

[15]  Walid G. Aref,et al.  SINA: scalable incremental processing of continuous queries in spatio-temporal databases , 2004, SIGMOD '04.

[16]  Jignesh M. Patel,et al.  STRIPES: an efficient index for predicted trajectories , 2004, SIGMOD '04.

[17]  Hanan Samet,et al.  Continuous K-Nearest Neighbor Queries for Continuously Moving Points with Updates , 2003, VLDB.

[18]  Philip S. Yu,et al.  Motion adaptive indexing for moving continual queries over moving objects , 2004, CIKM '04.

[19]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[20]  Nick Koudas,et al.  Filter Trees for Managing Spatial Data over a Range of Size Granularities , 1996, VLDB.

[21]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[22]  Chris Jermaine,et al.  Closest-Point-of-Approach Join for Moving Object Histories , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[23]  Nick Koudas,et al.  Size separation spatial join , 1997, SIGMOD '97.

[24]  David J. DeWitt,et al.  Partition based spatial-merge join , 1996, SIGMOD '96.

[25]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[26]  Jack A. Orenstein Spatial query processing in an object-oriented database system , 1986, SIGMOD '86.

[27]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[28]  Walid G. Aref,et al.  SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases , 2005, 21st International Conference on Data Engineering (ICDE'05).

[29]  Ming-Ling Lo,et al.  Spatial hash-joins , 1996, SIGMOD '96.

[30]  Dimitrios Gunopulos,et al.  Indexing Animated Objects Using Spatiotemporal Access Methods , 2001, IEEE Trans. Knowl. Data Eng..

[31]  Pankaj K. Agarwal,et al.  Indexing Moving Points , 2003, J. Comput. Syst. Sci..

[32]  Christian S. Jensen,et al.  Nearest neighbor and reverse nearest neighbor queries for moving objects , 2002, Proceedings International Database Engineering and Applications Symposium.