Microcomputer numerical experiments in quantum mechanics. 2: A recurrence-relation approach for eigenvalues

Recent work in the development of an accurate method of energy eigenvalue calculation is set out so that the reader can re-create the microcomputer experiments involved in the work. The resulting computational method can then be used as a working tool to investigate various aspects of quantum mechanics. An account is given of the use of the method in the course of a recent controversy about false eigenvalues.

[1]  J. Killingbeck On the Hill determinant method , 1986 .

[2]  M. Znojil Polynomial potentials and a hidden symmetry of the Hill-determinant eigenvalue method , 1986 .

[3]  J. Killingbeck Hill determinants and supersymmetry , 1986 .

[4]  J. Killingbeck Hill determinants and 1/N theory , 1985 .

[5]  Chaudhuri Rn Comment on the anharmonic oscillator and the analytic theory of continued fractions. , 1985 .

[6]  J. Killingbeck Direct expectation value calculations , 1985 .

[7]  R. Chaudhuri,et al.  On the ?x2 + ?x4 interaction , 1984 .

[8]  A. Hautot,et al.  On the applicability of the Hill determinant method , 1983 .

[9]  W. K. Burton,et al.  On the moment problem for non-positive distributions , 1982 .

[10]  J. Killingbeck Calibratory calculations for the Zeeman effect , 1981 .

[11]  J. Killingbeck Power series methods for eigenvalue calculation , 1981 .

[12]  R. Rosner,et al.  The bounded quartic oscillator , 1981 .

[13]  K. Banerjee,et al.  General anharmonic oscillators , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  P. K. Srivastava,et al.  The Hill Determinant: An Application to the Anharmonic Oscillator , 1971 .

[15]  A. A. Frost Approximate Series Solutions of Nonseparable Schrödinger Equations. I. Mathematical Formulation , 1964 .

[16]  Joseph O. Hirschfelder,et al.  Power‐Series Solutions for Energy Eigenvalues , 1962 .

[17]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .