Microcomputer numerical experiments in quantum mechanics. 2: A recurrence-relation approach for eigenvalues
暂无分享,去创建一个
[1] J. Killingbeck. On the Hill determinant method , 1986 .
[2] M. Znojil. Polynomial potentials and a hidden symmetry of the Hill-determinant eigenvalue method , 1986 .
[3] J. Killingbeck. Hill determinants and supersymmetry , 1986 .
[4] J. Killingbeck. Hill determinants and 1/N theory , 1985 .
[5] Chaudhuri Rn. Comment on the anharmonic oscillator and the analytic theory of continued fractions. , 1985 .
[6] J. Killingbeck. Direct expectation value calculations , 1985 .
[7] R. Chaudhuri,et al. On the ?x2 + ?x4 interaction , 1984 .
[8] A. Hautot,et al. On the applicability of the Hill determinant method , 1983 .
[9] W. K. Burton,et al. On the moment problem for non-positive distributions , 1982 .
[10] J. Killingbeck. Calibratory calculations for the Zeeman effect , 1981 .
[11] J. Killingbeck. Power series methods for eigenvalue calculation , 1981 .
[12] R. Rosner,et al. The bounded quartic oscillator , 1981 .
[13] K. Banerjee,et al. General anharmonic oscillators , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] P. K. Srivastava,et al. The Hill Determinant: An Application to the Anharmonic Oscillator , 1971 .
[15] A. A. Frost. Approximate Series Solutions of Nonseparable Schrödinger Equations. I. Mathematical Formulation , 1964 .
[16] Joseph O. Hirschfelder,et al. Power‐Series Solutions for Energy Eigenvalues , 1962 .
[17] C. Pekeris,et al. Ground State of Two-Electron Atoms , 1958 .