Computer aided geometric design of strip using developable Bézier patches

Developable strip is commonly used in product design due to its ease of manufacture. This paper proposes an algorithm for geometric design of strip using developable Bezier patches. It computes an aggregate of triangular and quadrilateral patches interpolate two given space curves defining a strip. The computation process selects optimal solutions in terms of surface assessment criteria specified by the user. Each patch is then degree-elevated to gain extra degrees of freedom, which produce G1 across the patch boundaries by modifying the control points while preserving the surface developability. Test examples with different design parameters illustrate and validate the feasibility of the proposed algorithm. In comparison with previous studies, this work allows strip design with freeform developable patches, generates better results in the surface assessment, and provides more flexible control on the design shape. It serves as a simple but effective approach for computer aided geometric design of developable strip.

[1]  H. Pottmann,et al.  Computational Line Geometry , 2001 .

[2]  Chih-Hsing Chu,et al.  Tool path planning for five-axis flank milling with developable surface approximation , 2006 .

[3]  Chih-Hsing Chu,et al.  Characterizing degrees of freedom for geometric design of developable composite Bézier surfaces , 2007 .

[4]  Takashi Maekawa,et al.  Design and Tessellation of B-Spline Developable Surfaces , 1998 .

[5]  Charlie C. L. Wang,et al.  On increasing the developability of a trimmed NURBS surface , 2004, Engineering with Computers.

[6]  Bahram Ravani,et al.  Geometric design and fabrication of developable Bezier and B-spline surfaces , 1994, DAC 1994.

[7]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[8]  R. Mohan,et al.  Design of developable surfaces using duality between plane and point geometries , 1993, Comput. Aided Des..

[9]  J. McCartney,et al.  Pattern development for 3D surfaces , 1991, Comput. Aided Des..

[10]  Günter Aumann,et al.  A simple algorithm for designing developable Bézier surfaces , 2003, Comput. Aided Geom. Des..

[11]  Yu Wang,et al.  Design automation for customized apparel products , 2005, Comput. Aided Des..

[12]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[13]  Charlie C. L. Wang,et al.  Optimal Boundary Triangulations of an Interpolating Ruled Surface , 2005, J. Comput. Inf. Sci. Eng..

[14]  Brian E. Konesky Computer aided design of developable surfaces , 1993 .

[15]  Günter Aumann,et al.  Degree elevation and developable Be'zier surfaces , 2004, Comput. Aided Geom. Des..

[16]  Thomas Randrup,et al.  Approximation of surfaces by cylinders , 1998, Comput. Aided Des..

[17]  Johannes Wallner,et al.  On Surface Approximation Using Developable Surfaces , 1999, Graph. Model. Image Process..

[18]  Helmut Pottmann,et al.  Rotational and helical surface approximation for reverse engineering , 1998, Computing.

[19]  T J Nolan,et al.  Computer-Aided Design of Developable Hull Surfaces , 1970 .

[20]  Carlo H. Séquin Rapid prototyping: a 3d visualization tool takes on sculpture and mathematical forms , 2005, CACM.

[21]  Helmut Pottmann,et al.  Approximation of developable surfaces with cone spline surfaces , 1998, Comput. Aided Des..

[22]  Joo-Haeng Lee Modeling Generalized Cylinders using Direction Map Representation , 2004 .

[23]  Kai Tang,et al.  Modeling Developable Folds on a Strip , 2005, J. Comput. Inf. Sci. Eng..

[24]  Juan Luis Monterde García-Pozuelo Bézier surfaces of minimal area: The Dirichlet approach , 2004 .

[25]  Chih-Hsing Chu,et al.  Developable Bézier patches: properties and design , 2002, Comput. Aided Des..

[26]  William H. Frey,et al.  Boundary Triangulations Approximating Developable Surfaces that Interpolate a Close Space Curve , 2002, Int. J. Found. Comput. Sci..

[27]  Johannes Wallner,et al.  Approximation algorithms for developable surfaces , 1999, Comput. Aided Geom. Des..

[28]  Günter Aumann,et al.  Interpolation with developable Bézier patches , 1991, Comput. Aided Geom. Des..

[29]  Charlie C. L. Wang,et al.  Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches , 2004, The Visual Computer.

[30]  Thomas Lamb,et al.  Shell Development Computer Aided Lofting - Is There a Problem or Not? (The National Shipbuilding Research Program) , 1993 .

[31]  Otto Röschel,et al.  Developable (1, n) - Bézier surfaces , 1992, Comput. Aided Geom. Des..

[32]  Martha J. Mancewicz,et al.  Developable Surfaces: Properties, Representations and Methods of Design , 1992 .

[33]  E. Munoko,et al.  Computers in Industry , 1963, Nature.