A fully discrete numerical scheme for weighted mean curvature flow
暂无分享,去创建一个
[1] Gerhard Dziuk,et al. Convergence of a finite element method for non-parametric mean curvature flow , 1995 .
[2] Nina Uraltseva,et al. Evolution of Nonparametric Surfaces with Speed Depending on Curvature, III. Some Remarks on Mean Curvature and Anisotropic flows , 1993 .
[3] R. Kohn,et al. Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature , 2014, 1407.5942.
[4] J. Taylor,et al. Overview No. 98 I—Geometric models of crystal growth , 1992 .
[5] Gerhard Dziuk,et al. DISCRETE ANISOTROPIC CURVATURE FLOW OF GRAPHS , 1999 .
[6] Sigurd B. Angenent,et al. Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .
[7] G. Bellettini,et al. Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .
[8] Charles M. Elliott,et al. Crystalline curvature flow of a graph in a variational setting , 1998 .
[9] Maurizio Paolini,et al. Numerical simulations of mean curvature flow in the presence of a nonconvex anisotropy , 1998 .
[10] Gary M. Lieberman,et al. The first initial-boundary value problem for quasilinear second order parabolic equations , 1986 .
[11] G. Dziuk. Numerical Schemes for the Mean Curvature Flow of Graphs , 1999 .
[12] Error Estimates for the Finite Element Method , 2002 .
[13] Yoshikazu Giga. Motion of a graph by convexified energy , 1993 .
[14] Morton E. Gurtin,et al. Multiphase thermomechanics with interfacial structure , 1990 .
[15] Gerhard Huisken,et al. Non-parametric mean curvature evolution with boundary conditions , 1989 .