A fully discrete numerical scheme for weighted mean curvature flow

Summary. We analyze a fully discrete numerical scheme approximating the evolution of n–dimensional graphs under anisotropic mean curvature. The highly nonlinear problem is discretized by piecewise linear finite elements in space and semi–implicitly in time. The scheme is unconditionally stable und we obtain optimal error estimates in natural norms. We also present numerical examples which confirm our theoretical results.

[1]  Gerhard Dziuk,et al.  Convergence of a finite element method for non-parametric mean curvature flow , 1995 .

[2]  Nina Uraltseva,et al.  Evolution of Nonparametric Surfaces with Speed Depending on Curvature, III. Some Remarks on Mean Curvature and Anisotropic flows , 1993 .

[3]  R. Kohn,et al.  Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature , 2014, 1407.5942.

[4]  J. Taylor,et al.  Overview No. 98 I—Geometric models of crystal growth , 1992 .

[5]  Gerhard Dziuk,et al.  DISCRETE ANISOTROPIC CURVATURE FLOW OF GRAPHS , 1999 .

[6]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[7]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[8]  Charles M. Elliott,et al.  Crystalline curvature flow of a graph in a variational setting , 1998 .

[9]  Maurizio Paolini,et al.  Numerical simulations of mean curvature flow in the presence of a nonconvex anisotropy , 1998 .

[10]  Gary M. Lieberman,et al.  The first initial-boundary value problem for quasilinear second order parabolic equations , 1986 .

[11]  G. Dziuk Numerical Schemes for the Mean Curvature Flow of Graphs , 1999 .

[12]  Error Estimates for the Finite Element Method , 2002 .

[13]  Yoshikazu Giga Motion of a graph by convexified energy , 1993 .

[14]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[15]  Gerhard Huisken,et al.  Non-parametric mean curvature evolution with boundary conditions , 1989 .