The multi-reference Hilbert space coupled-cluster study of the Li2 molecule. Application in a complete model space

Abstract The ground and three low-lying excited states of the Li 2 molecule are studied by our new multi-reference fully quadratic Hilbert space coupled-cluster method, using a complete model space of four reference functions. DZ and DZP results are reported and compared with full-Cl. The deviations are usually within the range of a few tenths of microhenry. Questions of convergence, including the modification of the one-electron potential and its critical influence on the computational performance of the present method are discussed.

[1]  U. Kaldor Li2 ground and excited states by the open-shell coupled-cluster method , 1990 .

[2]  I. Lindgren,et al.  On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces , 1987 .

[3]  S. Sander,et al.  Fourier transform infrared spectroscopy of the NO3 nu-2 and nu-3 bands - Absolute line strength measurements , 1987 .

[4]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[5]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[6]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .

[7]  U. Kaldor Direct calculation of excitation energies by the coupled‐cluster method: Mg and Ar atoms , 1986 .

[8]  K. Freed,et al.  Tests of using large valence spaces in quasidegenerate many‐body perturbation theory: Calculations of O2 potential curves , 1984 .

[9]  C. Wu Experimental investigation of a stable lithium cluster. The thermochemical study of the molecule Li4 , 1983 .

[10]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[11]  Multi-reference coupled-cluster methods for ionization potentials with partial inclusion of triple excitations , 1989 .

[12]  D. D. Konowalow,et al.  Long-range interactions of Li(n = 2) states with each other and the long-range interaction of Li(2s2S) with Li(3s2S) , 1983 .

[13]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[14]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[15]  D. Mukherjee Linked-cluster theorem in open shell coupled-cluster theory for mp-mh model space determinants , 1986 .

[16]  Robert J. Harrison,et al.  An efficient implementation of the full-CI method using an (n–2)-electron projection space , 1989 .

[17]  R. Bartlett,et al.  Multireference coupled-cluster methods using an incomplete model space: Application to ionization potentials and excitation energies of formaldehyde , 1987 .

[18]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[19]  T. P. Martin,et al.  Optical absorption of matrix isolated Li, Na, and Ag clusters and microcrystals , 1979 .

[20]  Jeffrey Goldstone,et al.  Derivation of the Brueckner many-body theory , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  N. C. Francis,et al.  High-Energy Reactions and the Evidence for Correlations in the Nuclear Ground-State Wave Function , 1955 .

[22]  U. Kaldor,et al.  Open-shell coupled-cluster theory applied to atomic and molecular systems , 1985 .

[23]  R. Bartlett,et al.  Multireference coupled‐cluster method: Ionization potentials and excitation energies for ketene and diazomethane , 1989 .

[24]  K. Brueckner,et al.  TWO-BODY FORCES AND NUCLEAR SATURATION. III. DETAILS OF THE STRUCTURE OF THE NUCLEUS , 1955 .

[25]  U. Kaldor,et al.  Three-electron excitation in open-shell coupled-cluster theory , 1985 .

[26]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[27]  R. Bartlett,et al.  Molecular applications of multireference coupled‐cluster methods using an incomplete model space: Direct calculation of excitation energies , 1988 .

[28]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[29]  D. D. Konowalow,et al.  The electronic structure and spectra of the X1S+g and A 1S+u states of Li2 , 1979 .

[30]  D. D. Konowalow,et al.  The vibrational energy levels of the A 1Σ+u state of Li2 , 1977 .

[31]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[32]  Klaus Ruedenberg,et al.  Electronic rearrangements during chemical reactions. II. Planar dissociation of ethylene , 1979 .

[33]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[34]  Stephen Wilson,et al.  Methods in Computational Chemistry , 1987 .

[35]  U. Kaldor Open‐shell coupled‐cluster method: Electron affinities of Li and Na , 1987 .

[36]  S. Pal,et al.  Use of Cluster Expansion Methods in the Open-Shell Correlation Problem , 1989 .

[37]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[38]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .

[39]  C. Bauschlicher,et al.  Theoretical study of the litium dimer and its anion , 1983 .

[40]  Rodney J. Bartlett,et al.  Fifth-Order Many-Body Perturbation Theory and Its Relationship to Various Coupled-Cluster Approaches* , 1986 .

[41]  H. Weidenmüller,et al.  Perturbation theory for the effective interaction in nuclei , 1973 .

[42]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[43]  Bartlett,et al.  Convergence properties of multireference many-body perturbation theory. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[44]  D. Mukherjee,et al.  A non-perturbative open-shell theory for atomic and molecular systems: Application to transbutadiene , 1975 .

[45]  K. Freed,et al.  Ab initio effective valence shell Hamiltonian calculations of Li2 potential curves , 1983 .

[46]  Debashis Mukherjee,et al.  Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene , 1977 .

[47]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[48]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[49]  D. Mukherjee The linked-cluster theorem in the open-shell coupled-cluster theory for incomplete model spaces , 1986 .

[50]  Josef Paldus,et al.  Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems , 1975 .

[51]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[52]  D. Mukherjee,et al.  Correlation problem in open-shell atoms and molecules. A non-perturbative linked cluster formulation , 1975 .

[53]  P. Wormer,et al.  Coupled-pair theories and Davidson-type corrections for quasidegenerate states: the H4 model revisited , 1988 .

[54]  D. Hochhauser,et al.  Electronic transition dipole moment functions and difference potentials for transitions among low-lying states of Li2 and Na2 , 1983 .

[55]  H. Weidenmüller,et al.  The effective interaction in nuclei and its perturbation expansion: An algebraic approach , 1972 .