Charge-based silicon quantum computer architectures using controlled single-ion implantation

We report a nanofabrication, control and measurement scheme for charge-based silicon quantum computing which utilises a new technique of controlled single ion implantation. Each qubit consists of two phosphorus dopant atoms ~50 nm apart, one of which is singly ionized. The lowest two energy states of the remaining electron form the logical states. Surface electrodes control the qubit using voltage pulses and dual single electron transistors operating near the quantum limit provide fast readout with spurious signal rejection. A low energy (keV) ion beam is used to implant the phosphorus atoms in high-purity Si. Single atom control during the implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure, while positional accuracy is provided by a nanomachined resist mask. We describe a construction process for implanted single atom and atom cluster devices with all components registered to better than 20 nm, together with electrical characterisation of the readout circuitry. We also discuss universal one- and two-qubit gate operations for this architecture, providing a possible path towards quantum computing in silicon.

[1]  Rosario Fazio,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[2]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[3]  T. M. Buehler,et al.  Correlated charge detection for readout of a solid-state quantum computer , 2003 .

[4]  Andrew D. Greentree,et al.  Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise , 2003 .

[5]  N. Saks MEASUREMENT OF SINGLE INTERFACE TRAP CAPTURE CROSS SECTIONS WITH CHARGE PUMPING , 1997 .

[6]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[7]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[8]  M. Y. Simmons,et al.  Towards the fabrication of phosphorus qubits for a silicon quantum computer , 2001 .

[9]  S. Tarucha,et al.  Microwave spectroscopy of a quantum-dot molecule , 1998, Nature.

[10]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[11]  Davide Pandini,et al.  Global and local congestion optimization in technology mapping , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[13]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[14]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[15]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[16]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[17]  D. Schuster,et al.  Measurement of the excited-state lifetime of a microelectronic circuit. , 2003, Physical review letters.

[18]  Technology computer-aided design modelling of single-atom doping for fabrication of buried nanostructures , 2003 .

[19]  Yasunobu Nakamura,et al.  Quantum Oscillations in Two Coupled Charge Qubits , 2003 .

[20]  C. Yang,et al.  Ion-beam-induced-charge characterisation of particle detectors , 2002 .

[21]  Victor E. Borisenko,et al.  Rapid Thermal Processing of Semiconductors , 1997 .

[22]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[23]  R. P. McKinnon,et al.  Nanofabrication processes for single-ion implantation of silicon quantum computer devices , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[24]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[25]  C. Curtis,et al.  Field ionization device used for measuring the pulse height defect of He+ in silicon , 1977 .

[26]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[27]  E. Hyde,et al.  Semiconductor detectors. , 1966, Science.

[28]  G. J. Milburn,et al.  Measuring the decoherence rate in a semiconductor charge qubit , 2003 .

[29]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[30]  L. Hollenberg,et al.  Thermal noise in a solid state quantum computer , 2002 .

[31]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[32]  A self-aligned fabrication process for silicon quantum computer devices , 2002, cond-mat/0208374.

[33]  A D Stone,et al.  Resonant cooper-pair tunneling: quantum noise and measurement characteristics. , 2002, Physical review letters.

[34]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[35]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[36]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[37]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[38]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[39]  Error rate of the Kane quantum computer controlled-NOT gate in the presence of dephasing , 2002, quant-ph/0207103.