Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties

[1]  L. Tang,et al.  Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles , 2014 .

[2]  M. Kovalenko,et al.  Precisely Engineered Colloidal Nanoparticles and Nanocrystals for Li-Ion and Na-Ion Batteries: Model Systems or Practical Solutions? , 2014 .

[3]  X. Lou,et al.  Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries. , 2014, Angewandte Chemie.

[4]  Petr Král,et al.  Self-assembly of magnetite nanocubes into helical superstructures , 2014, Science.

[5]  L. Monconduit,et al.  Confined Ultrasmall SnO2 Particles in Micro/Mesoporous Carbon as an Extremely Long Cycle‐Life Anode Material for Li‐Ion Batteries , 2014 .

[6]  L. D. A. Siebbeles,et al.  Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices , 2014, Science.

[7]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[8]  Dieter Söll,et al.  Cover Picture: Recoding the Genetic Code with Selenocysteine (Angew. Chem. Int. Ed. 1/2014) , 2014 .

[9]  D. Milliron,et al.  Electronically coupled nanocrystal superlattice films by in situ ligand exchange at the liquid-air interface. , 2013, ACS nano.

[10]  A. Stein,et al.  Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes , 2013 .

[11]  Dong Jun Lee,et al.  Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. , 2013, Nano letters.

[12]  Zheng Yan,et al.  Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. , 2013, ACS nano.

[13]  J. M. Kikkawa,et al.  Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing. , 2013, ACS nano.

[14]  Dong Jun Lee,et al.  Self-Assembled Fe 3 O 4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Con fi nement , 2013 .

[15]  Zhongwu Wang,et al.  Self-Assembled Colloidal Superparticles from Nanorods , 2012, Science.

[16]  Youngjin Kim,et al.  Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. , 2012, Journal of the American Chemical Society.

[17]  Xuefeng Guo,et al.  Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[18]  Matthew G. Panthani,et al.  Nanocrystals for electronics. , 2012, Annual review of chemical and biomolecular engineering.

[19]  Wen‐Cui Li,et al.  Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume , 2012 .

[20]  R. Li,et al.  Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage , 2012 .

[21]  Zhongwu Wang,et al.  Structural control of nanocrystal superlattices using organic guest molecules. , 2012, Journal of the American Chemical Society.

[22]  Keith J Stevenson,et al.  Silicon nanowire fabric as a lithium ion battery electrode material. , 2011, Journal of the American Chemical Society.

[23]  D. Muller,et al.  Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. , 2011, Nano letters.

[24]  H. Qiao,et al.  Sonochemical synthesis of ordered SnO₂/CMK-3 nanocomposites and their lithium storage properties. , 2011, ACS applied materials & interfaces.

[25]  G. Stucky,et al.  Spontaneous Phase Separation Mediated Synthesis of 3D Mesoporous Carbon with Controllable Cage and Window Size , 2011, Advanced materials.

[26]  L. Archer,et al.  Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. , 2011, Journal of the American Chemical Society.

[27]  D. Zhao,et al.  Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas , 2011 .

[28]  Jong-Sung Yu,et al.  Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance , 2010 .

[29]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[30]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[31]  Weiguo Song,et al.  Synthesis of Porous and Graphitic Carbon for Electrochemical Detection , 2009 .

[32]  L. Nazar,et al.  Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. , 2009, Angewandte Chemie.

[33]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[34]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[35]  H. Jaeger,et al.  Elastic membranes of close-packed nanoparticle arrays. , 2007, Nature materials.

[36]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[37]  M. Pileni Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. , 2007, Accounts of chemical research.

[38]  M. Jaroniec,et al.  Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. , 2006, Journal of the American Chemical Society.

[39]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[40]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[41]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[42]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[43]  Jaephil Cho,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery. , 2005 .

[44]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[45]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[46]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[47]  Tae-Wan Kim,et al.  A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. , 2003, Angewandte Chemie.

[48]  Chunlai Ma,et al.  Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method , 2002 .

[49]  Mietek Jaroniec,et al.  Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure , 2000 .

[50]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .