Adaptive Set-Oriented Computation of Topological Horseshoe Factors in Area and Volume Preserving Maps

We describe an automatic chaos verification scheme, based on set-oriented numerical methods, which is especially well suited to the study of area- and volume preserving diffeomorphisms. The novel feature of the scheme is an iterative algorithm for approximating connecting orbits between collections of hyperbolic fixed and periodic points with greater and greater accuracy. The algorithm is geometric rather than graph theoretic in nature and, in contrast to existing methods, does not require the computation of chain recurrent sets. We provide several example computations in dimensions two and three.

[1]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[2]  Konstantin Mischaikow,et al.  TOWARDS AUTOMATED CHAOS VERIFICATION , 2005 .

[3]  R. Llave,et al.  TOPOLOGICAL METHODS IN THE INSTABILITY PROBLEM OF HAMILTONIAN SYSTEMS , 2005 .

[4]  Michael Dellnitz,et al.  The numerical detection of connecting orbits , 2001 .

[5]  C. Robinson,et al.  Obstruction argument for transition chains of tori interspersed with gaps , 2009 .

[6]  William D. Kalies,et al.  A computational approach to conley's decomposition theorem , 2006 .

[7]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[8]  Rafael M. Frongillo,et al.  Algorithms for Rigorous Entropy Bounds and Symbolic Dynamics , 2008, SIAM J. Appl. Dyn. Syst..

[9]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[10]  P. Pilarczyk,et al.  Excision-preserving cubical approach to the algorithmic computation of the discrete Conley index , 2008 .

[11]  James D. Meiss,et al.  Controlling chaotic transport through recurrence , 1995 .

[12]  Daoqi Yang,et al.  C++ and Object-Oriented Numeric Computing for Scientists and Engineers , 2000, Springer New York.

[13]  Editors , 1986, Brain Research Bulletin.

[14]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[15]  J. Palis,et al.  Geometric theory of dynamical systems : an introduction , 1984 .

[16]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[17]  Michael Dellnitz,et al.  On target for Venus – set oriented computation of energy efficient low thrust trajectories , 2006 .

[18]  Oliver Junge,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures: proof of convergence , 2001 .

[19]  Alexander A. Stepanov,et al.  C++ Standard Template Library , 2000 .

[20]  George Osipenko Dynamical systems, graphs, and algorithms , 2007 .

[21]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[22]  C. Robinson,et al.  Symbolic Dynamics for Transition Tori-II , 2004 .

[23]  Konstantin Mischaikow,et al.  The Conley index theory: A brief introduction , 1999 .

[24]  H. Weiss,et al.  A geometric criterion for positive topological entropy , 1995 .

[25]  A. Szymczak A combinatorial procedure for finding isolating neighbourhoods and index pairs , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[27]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[28]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[29]  Keith D. Stroyan,et al.  Continuous Dynamical Systems , 1993 .

[30]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[31]  Shane D. Ross,et al.  Transport in Dynamical Astronomy and Multibody Problems , 2005, Int. J. Bifurc. Chaos.

[32]  A. Szymczak The Conley index for discrete semidynamical systems , 1995 .

[33]  S. S. Cairns,et al.  Differential and combinatorial topology : a symposium in honor of Marston Morse , 1965 .

[34]  J. Meiss,et al.  Targeting chaotic orbits to the Moon through recurrence , 1995 .

[35]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[36]  Eric J. Kostelich,et al.  Optimal targeting of chaos , 1998 .

[37]  Lars Grüne,et al.  A set oriented approach to optimal feedback stabilization , 2005, Syst. Control. Lett..

[38]  Y. Suris A discrete-time Garnier system , 1994 .

[39]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[40]  Roman Srzednicki A generalization of the Lefschetz fixed point theorem and detection of chaos , 1999 .

[41]  坂上 貴之 書評 Computational Homology , 2005 .

[42]  B. M. Fulk MATH , 1992 .

[43]  Konstantin Mischaikow,et al.  Graph Approach to the Computation of the Homology of Continuous Maps , 2005, Found. Comput. Math..