Multiple sparse priors for the M/EEG inverse problem

This paper describes an application of hierarchical or empirical Bayes to the distributed source reconstruction problem in electro- and magnetoencephalography (EEG and MEG). The key contribution is the automatic selection of multiple cortical sources with compact spatial support that are specified in terms of empirical priors. This obviates the need to use priors with a specific form (e.g., smoothness or minimum norm) or with spatial structure (e.g., priors based on depth constraints or functional magnetic resonance imaging results). Furthermore, the inversion scheme allows for a sparse solution for distributed sources, of the sort enforced by equivalent current dipole (ECD) models. This means the approach automatically selects either a sparse or a distributed model, depending on the data. The scheme is compared with conventional applications of Bayesian solutions to quantify the improvement in performance.

[1]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[2]  Karl J. Friston,et al.  Statistical parametric mapping for event-related potentials (II): a hierarchical temporal model , 2004, NeuroImage.

[3]  Christopher M. Bishop,et al.  Neural networks and machine learning , 1998 .

[4]  Geoffrey E. Hinton,et al.  Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .

[5]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[6]  Karl J. Friston,et al.  A mesostate-space model for EEG and MEG , 2007, NeuroImage.

[7]  John S George,et al.  Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis. , 2006, Physics in medicine and biology.

[8]  Hyun-Chul Kim,et al.  Bayesian Gaussian Process Classification with the EM-EP Algorithm , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[10]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[11]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[12]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[13]  R. Henson,et al.  Electrophysiological and haemodynamic correlates of face perception, recognition and priming. , 2003, Cerebral cortex.

[14]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[15]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[16]  James P. LeSage,et al.  Using Matrix Exponentials to Explore Spatial Structure in Regression Relationships , 2000 .

[17]  Karl J. Friston,et al.  Population-level inferences for distributed MEG source localization under multiple constraints: Application to face-evoked fields , 2007, NeuroImage.

[18]  Ramesh Srinivasan,et al.  Bayesian estimates of error bounds for EEG source imaging , 1998, IEEE Transactions on Medical Imaging.

[19]  M. Fuchs,et al.  Linear and nonlinear current density reconstructions. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[20]  Jérémie Mattout,et al.  Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework , 2007, NeuroImage.

[21]  Karl J. Friston,et al.  Diffusion-based spatial priors for imaging , 2007, NeuroImage.

[22]  Brian D. Ripley,et al.  Flexible Non-linear Approaches to Classification , 1994 .

[23]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[24]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[25]  Karl J. Friston,et al.  Systematic noise regularisation for linear inverse solution of the source localisation problem in EEG , 2001, NeuroImage.

[26]  M. E. Spencer,et al.  Error bounds for EEG and MEG dipole source localization. , 1993, Electroencephalography and clinical neurophysiology.

[27]  H. Benali,et al.  BrainVISA: Software platform for visualization and analysis of multi-modality brain data , 2001, NeuroImage.

[28]  Karl J. Friston,et al.  Systematic Regularization of Linear Inverse Solutions of the EEG Source Localization Problem , 2002, NeuroImage.

[29]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..

[30]  Karl J. Friston,et al.  Canonical Source Reconstruction for MEG , 2007, Comput. Intell. Neurosci..

[31]  Kensuke Sekihara,et al.  Controlled Support MEG imaging , 2006, NeuroImage.

[32]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[33]  Karl J. Friston,et al.  Bayesian estimation of evoked and induced responses , 2006, Human brain mapping.

[34]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[35]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[36]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[37]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[38]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[39]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[40]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[41]  Karl J. Friston,et al.  Bayesian decoding of brain images , 2008, NeuroImage.

[42]  Jouko Lampinen,et al.  Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods , 2007, NeuroImage.

[43]  Dana H. Brooks,et al.  Bayesian solutions and performance analysis in bioelectric inverse problems , 2005, IEEE Transactions on Biomedical Engineering.

[44]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[45]  Radford M. Neal Assessing Relevance determination methods using DELVE , 1998 .

[46]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[47]  Karl J. Friston,et al.  Anatomically Informed Basis Functions for EEG Source Localization: Combining Functional and Anatomical Constraints , 2002, NeuroImage.