Cosmological constraints with deep learning from KiDS-450 weak lensing maps

Convolutional neural networks (CNNs) have recently been demonstrated on synthetic data to improve upon the precision of cosmological inference. In particular, they have the potential to yield more precise cosmological constraints from weak lensing mass maps than the two-point functions. We present the cosmological results with a CNN from the KiDS-450 tomographic weak lensing dataset, constraining the total matter density Ωm, the fluctuation amplitude σ8, and the intrinsic alignment amplitude AIA. We use a grid of N-body simulations to generate a training set of tomographic weak lensing maps. We test the robustness of the expected constraints to various effects, such as baryonic feedback, simulation accuracy, a different value of H0, or the light cone projection technique. We train a set of ResNet-based CNNs with varying depths to analyze sets of tomographic KiDS mass maps divided into 20 flat regions, with applied Gaussian smoothing of σ=2.34  arc min. The uncertainties on shear calibration and n(z) error are marginalized in the likelihood pipeline. Following a blinding scheme, we derive constraints on S8=σ8(Ωm/0.3)0.5=0.777-0.036+0.038 with our CNN analysis, with AIA=1.398-0.724+0.779. We compare this result to the power spectrum analysis on the same maps and likelihood pipeline and find an improvement of about 30% for the CNN. We discuss how our results offer excellent prospects for the use of deep learning in future cosmological data analysis.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[3]  Inferring cosmic string tension through the neural network prediction of string locations in CMB maps , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[5]  Laurence Perreault Levasseur,et al.  Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing , 2017, 1708.08843.

[6]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[7]  P. Astier,et al.  Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.

[8]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[9]  Joachim Stadel,et al.  PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys , 2016, 1609.08621.

[10]  Bradley Greig,et al.  Deep learning from 21-cm tomography of the Cosmic Dawn and Reionization , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  A. Amara,et al.  Weak lensing peak statistics in the era of large scale cosmological surveys , 2018, Journal of Cosmology and Astroparticle Physics.

[12]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[13]  S. Sivanandam,et al.  GALAXY CLUSTER BARYON FRACTIONS REVISITED , 2013, 1309.3565.

[14]  T. Schrabback,et al.  Weak lensing from space: first cosmological constraints from three-point shear statistics★ , 2010, 1005.4941.

[15]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[16]  Thomas Hofmann,et al.  Fast cosmic web simulations with generative adversarial networks , 2018, Computational Astrophysics and Cosmology.

[17]  Benjamin D. Wandelt,et al.  Automatic physical inference with information maximising neural networks , 2018, 1802.03537.

[18]  Daniel J. Hsu,et al.  Non-Gaussian information from weak lensing data via deep learning , 2018, ArXiv.

[19]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[20]  Nathanael Perraudin,et al.  DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications , 2018, Astron. Comput..

[21]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[22]  Adam Amara,et al.  Fast point spread function modeling with deep learning , 2018, Journal of Cosmology and Astroparticle Physics.

[23]  H. Hoekstra,et al.  KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations , 2017, 1709.07678.

[24]  Thomas Hofmann,et al.  Cosmological constraints from noisy convergence maps through deep learning , 2018, Physical Review D.

[25]  Morgan May,et al.  Validity of the Born approximation for beyond Gaussian weak lensing observables , 2016, 1612.00852.

[26]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[27]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[28]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[29]  A. Knebe,et al.  Ahf: AMIGA'S HALO FINDER , 2009, 0904.3662.

[30]  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2009 .

[31]  R. Teyssier,et al.  A new method to quantify the effects of baryons on the matter power spectrum , 2015, 1510.06034.

[32]  J. Kneib,et al.  Cosmological constraints from weak lensing peak statistics with Canada–France–Hawaii Telescope Stripe 82 Survey , 2014, 1412.3683.

[33]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[34]  C. Gheller,et al.  Deep learning based detection of cosmological diffuse radio sources , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[36]  Adam Amara,et al.  Fast generation of covariance matrices for weak lensing , 2018, Journal of Cosmology and Astroparticle Physics.

[37]  Stuart P. D. Gill,et al.  The evolution of substructure - I. A new identification method , 2004, astro-ph/0404258.

[38]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[39]  Michelle Lochner,et al.  Machine learning cosmological structure formation , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  H. Hoekstra,et al.  KiDS-450: cosmological constraints from weak lensing peak statistics - I. Inference from analytical prediction of high signal-to-noise ratio convergence peaks , 2017, 1709.07651.

[41]  Andrea Petri,et al.  Mocking the weak lensing universe: The LensTools Python computing package , 2016, Astron. Comput..

[42]  Benjamin Dan Wandelt,et al.  Nuisance hardened data compression for fast likelihood-free inference , 2019, Monthly Notices of the Royal Astronomical Society.

[43]  S. Paltani,et al.  The XXL Survey XIII. Baryon content of the bright cluster sample , 2015, 1512.03814.

[44]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples , 2008 .

[45]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[46]  Stefano Marelli,et al.  Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  C. B. D'Andrea,et al.  Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data , 2016, 1603.05040.

[48]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[49]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[50]  J. Stadel Cosmological N-body simulations and their analysis , 2001 .

[51]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[52]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[53]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[54]  I. McCarthy,et al.  Painting with baryons: augmenting N-body simulations with gas using deep generative models , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[55]  R. Teyssier,et al.  Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation , 2018, Journal of Cosmology and Astroparticle Physics.

[56]  Jean-Luc Starck,et al.  Distinguishing standard and modified gravity cosmologies with machine learning , 2018, Physical Review D.

[57]  Naoki Yoshida,et al.  IMPACT OF BARYONIC PROCESSES ON WEAK-LENSING COSMOLOGY: POWER SPECTRUM, NONLOCAL STATISTICS, AND PARAMETER BIAS , 2015, 1501.02055.

[58]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[59]  Benjamin Dan Wandelt,et al.  Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology , 2018, 1801.01497.

[60]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[61]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[64]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[65]  Jean-Luc Starck,et al.  On the dissection of degenerate cosmologies with machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[66]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[67]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[68]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[69]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[70]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[71]  Christopher M. Hirata,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[72]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[73]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[74]  J. P. Dietrich,et al.  Cosmology with the shear-peak statistics , 2009, 0906.3512.

[75]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[76]  MON , 2020, Catalysis from A to Z.