Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea

[1]  E. Delong,et al.  Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype , 2014, The ISME Journal.

[2]  K. Helliwell,et al.  Widespread decay of vitamin-related pathways: coincidence or consequence? , 2013, Trends in genetics : TIG.

[3]  H. J. Tripp The unique metabolism of SAR11 aquatic bacteria , 2013, Journal of Microbiology.

[4]  J. Montoya,et al.  The distribution of thiamin and pyridoxine in the western tropical North Atlantic Amazon River plume , 2013, Front. Microbiol..

[5]  S. Giovannoni,et al.  Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium , 2012, The ISME Journal.

[6]  E. Delong,et al.  Pattern and synchrony of gene expression among sympatric marine microbial populations , 2013, Proceedings of the National Academy of Sciences.

[7]  Jonathan A. Eisen,et al.  Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource , 2012, BMC Bioinformatics.

[8]  C. Gobler,et al.  Vitamin B1 and B12 Uptake and Cycling by Plankton Communities in Coastal Ecosystems , 2012, Front. Microbio..

[9]  E. Bertrand,et al.  Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton , 2012, Front. Microbio..

[10]  Maureen L. Coleman,et al.  Transcriptome and Proteome Dynamics of a Light-Dark Synchronized Bacterial Cell Cycle , 2012, PloS one.

[11]  D. Karl,et al.  Multiple B-vitamin depletion in large areas of the coastal ocean , 2012, Proceedings of the National Academy of Sciences.

[12]  Ruben E. Valas,et al.  Influence of cobalamin scarcity on diatom molecular physiology and identification of a cobalamin acquisition protein , 2012, Proceedings of the National Academy of Sciences.

[13]  T. Williams,et al.  A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters , 2012, The ISME Journal.

[14]  R. Lenski,et al.  The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss , 2012, mBio.

[15]  Xiaodong Ma,et al.  Development of Two Scalable Syntheses of 4-Amino-5-aminomethyl-2-methylpyrimidine: Key Intermediate for Vitamin B1 , 2012 .

[16]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[17]  T. Williams,et al.  A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters , 2012, The ISME Journal.

[18]  D. Caron,et al.  Marine bacterial, archaeal and protistan association networks reveal ecological linkages , 2011, The ISME Journal.

[19]  Alex Boyd,et al.  Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data , 2011, PLoS currents.

[20]  Zasha Weinberg,et al.  Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.

[21]  T. Begley,et al.  The structural and biochemical foundations of thiamin biosynthesis. , 2009, Annual review of biochemistry.

[22]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[23]  S. Giovannoni,et al.  Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea , 2009, The ISME Journal.

[24]  Kristina Schauer,et al.  Both Thiamine Uptake and Biosynthesis of Thiamine Precursors Are Required for Intracellular Replication of Listeria monocytogenes , 2009, Journal of bacteriology.

[25]  M. Gelfand,et al.  A Novel Class of Modular Transporters for Vitamins in Prokaryotes , 2008, Journal of bacteriology.

[26]  Richard D. Smith,et al.  Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea , 2009, The ISME Journal.

[27]  D. Downs,et al.  ThiC is an [Fe-S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. , 2008, Biochemistry.

[28]  S. Giovannoni,et al.  The small genome of an abundant coastal ocean methylotroph. , 2008, Environmental microbiology.

[29]  S. Giovannoni,et al.  SAR11 marine bacteria require exogenous reduced sulphur for growth , 2008, Nature.

[30]  Kazuko Yamada,et al.  The direct precursor of the pyrimidine moiety of thiamin is not urocanic acid but histidine in Saccharomyces cerevisiae. , 2008, Journal of nutritional science and vitaminology.

[31]  Michael E Webb,et al.  Thiamine biosynthesis in algae is regulated by riboswitches , 2007, Proceedings of the National Academy of Sciences.

[32]  T. Begley,et al.  A new thiamin salvage pathway. , 2007, Nature chemical biology.

[33]  M. Saito,et al.  Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea , 2007 .

[34]  C. Duarte,et al.  B vitamins as regulators of phytoplankton dynamics , 2006 .

[35]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[36]  P. Poole,et al.  Thiamine Is Synthesized by a Salvage Pathway in Rhizobium leguminosarum bv. viciae Strain 3841 , 2006, Journal of bacteriology.

[37]  I. Hewson,et al.  Annually reoccurring bacterial communities are predictable from ocean conditions , 2006, Proceedings of the National Academy of Sciences.

[38]  Alison G. Smith,et al.  Algae Need Their Vitamins , 2006, Eukaryotic Cell.

[39]  R. D. Walter,et al.  Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine , 2006, Biological chemistry.

[40]  Martin J. Warren,et al.  Algae acquire vitamin B12 through a symbiotic relationship with bacteria , 2005, Nature.

[41]  Kiyoshi Ito,et al.  Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae , 2005, Applied and Environmental Microbiology.

[42]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[43]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[44]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[45]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[46]  M. R. Brown,et al.  The vitamin content of microalgae used in aquaculture , 1999, Journal of Applied Phycology.

[47]  R. Wightman,et al.  The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. , 2003, Microbiology.

[48]  F. Morel,et al.  The Biogeochemical Cycles of Trace Metals in the Oceans , 2003, Science.

[49]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[50]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[51]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[52]  T. Begley,et al.  Mechanistic studies on thiamin phosphate synthase: evidence for a dissociative mechanism. , 2001, Biochemistry.

[53]  D. Scanlan,et al.  Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). , 2000, International journal of systematic and evolutionary microbiology.

[54]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[55]  Hans G. Schlegel,et al.  Biology of the prokaryotes , 1999 .

[56]  D. Downs,et al.  thiBPQ Encodes an ABC Transporter Required for Transport of Thiamine and Thiamine Pyrophosphate inSalmonella typhimurium * , 1998, The Journal of Biological Chemistry.

[57]  宮下 英明,et al.  原核緑色植物, Prochlorococcus marinus の培養法の検討 , 1997 .

[58]  D. Downs Evidence for a new, oxygen-regulated biosynthetic pathway for the pyrimidine moiety of thiamine in Salmonella typhimurium , 1992, Journal of bacteriology.

[59]  L. Machlin Handbook of vitamins: nutritional, biochemical, and clinical aspects. , 1984 .

[60]  S. Norman,et al.  Development of a Defined Medium for Growth of Cercospora rosicola Passerini , 1981, Applied and environmental microbiology.

[61]  A. Carlucci,et al.  VITAMIN B12, THIAMINE, AND BIOTIN CONTENTS OF MARINE PHYTOPLANKTON 1 , 1972 .

[62]  A. Carlucci,et al.  VITAMIN PRODUCTION AND UTILIZATION BY PHYTOPLANKTON IN MIXED CULTURE 1 , 1970 .

[63]  A. Carlucci,et al.  PRODUCTION OF VITAMIN B12, THIAMINE, AND BIOTIN BY PHYTOPLANKTON 1 , 1970 .

[64]  K. Natarajan DISTRIBUTION AND SIGNIFICANCE OF VITAMIN B12 AND THIAMINE IN THE SUBARCTIC PACIFIC OCEAN1 , 1970 .

[65]  K. Gold SOME FACTORS AFFECTING THE STABILITY OF THIAMINE , 1968 .

[66]  D. Button Selective thiamine removal from culture media by ultraviolet irradiation. , 1968, Applied microbiology.

[67]  K. Natarajan Distribution of thiamine, biotin, and niacin in the sea. , 1968, Applied microbiology.

[68]  R. Dugdale,et al.  BIOASSAY AND DISTRIBUTION OF THIAMINE IN THE SEA1 , 1966 .

[69]  O. A. Roels,et al.  Temperature Dependent Destruction of Thiamine in SEAWATER1 , 1966 .

[70]  R. Lewin,et al.  Physiology and Biochemistry of Algae. , 1963 .

[71]  M. Droop Requirement for Thiamine Among Some Marine and Supra-Littoral Protista , 1958, Journal of the Marine Biological Association of the United Kingdom.