The formation of TiO2 nanowires directly from nanoparticles

TiO(2) nanowires were fabricated by annealing TiO(2) nanoparticles on silicon substrate at 1000 degrees C in air. When a polystyrene nanosphere monolayer was used as a template to separate the TiO(2) nanoparticles, they could more easily react with the silicon substrate to form Ti(5)Si(3). The TiO(2) nanowires were formed upon further oxidation of Ti(5)Si(3). The diameters and lengths of TiO(2) nanowires were 30-80 nm and 1-3 microm, respectively. The nanowires had a rutile structure with the growth direction [112]. It is believed that the formation of TiO(2) nanowires involved a precipitation process in the mixture of SiO(2) and TiO(2). The nanowires show different photoluminescence behavior from that of the powder.

[1]  Growth of TiO2 nanorods by two-step thermal evaporationa) , 2005 .

[2]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[3]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[4]  A. Abba,et al.  High-temperature oxidation of titanium silicide coatings on titanium , 1982 .

[5]  M. Siegfried,et al.  Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution , 2004 .

[6]  D. Appell Wired for success , 2002 .

[7]  W. Tremel,et al.  Facile synthesis and characterization of functionalized, monocrystalline rutile TiO2 nanorods. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  James L. Gole,et al.  Tin Oxide Nanowires, Nanoribbons, and Nanotubes , 2002 .

[9]  C. R. Helms,et al.  Silicide and Schottky barrier formation in the Ti‐Si and the Ti‐SiOx ‐Si systems , 1982 .

[10]  L. D. Haart,et al.  The observation of exciton emission from rutile single crystals , 1986 .

[11]  Y. Sung,et al.  Controlled growth of high-quality TiO2 nanowires on sapphire and silica , 2006 .

[12]  Jun Chen,et al.  Large‐Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties , 2003 .

[13]  M. Tomkiewicz,et al.  Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments , 1993 .

[14]  Dapeng Yu,et al.  Nano-scale GeO2 wires synthesized by physical evaporation , 1999 .

[15]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[16]  B. Xiang,et al.  Synthesis and field emission properties of TiSi2 nanowires , 2005 .

[17]  Zhong Lin Wang,et al.  Lead oxide nanobelts and phase transformation induced by electron beam irradiation , 2002 .

[18]  Yadong Yin,et al.  Synthesis and Characterization of MgO Nanowires Through a Vapor‐Phase Precursor Method , 2002 .

[19]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[20]  B. Ashcroft,et al.  Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy , 2002 .

[21]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[22]  Xiaolong Chen,et al.  Fabrication of zinc oxide nanorods , 2001 .

[23]  Lih-Juann Chen,et al.  Growth of high-density titanium silicide nanowires in a single direction on a silicon surface. , 2007, Nano letters.

[24]  S. Feng,et al.  Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide , 2002 .

[25]  W. Brower,et al.  No-Phonon 4 T 2 g- 4 A 2 g Transitions of Cr 3+ in TiO 2 , 1970 .

[26]  Fumin Wang,et al.  Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. , 2006, The journal of physical chemistry. B.

[27]  L. Curtiss,et al.  Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. , 2005, Nano letters.

[28]  Lianmao Peng,et al.  The structure of trititanate nanotubes. , 2002, Acta crystallographica. Section B, Structural science.