Photonic Band Gap in Isotropic Hyperuniform Disordered Solids with Low Dielectric Contrast References and Links

We report the first experimental demonstration of a TE-polarization photonic band gap (PBG) in a 2D isotropic hyperuniform disordered solid (HUDS) made of dielectric media with a dielectric index contrast of 1.6:1, very low for PBG formation. The solid is composed of a connected network of dielectric walls enclosing air-filled cells. Direct comparison with photonic crystals and quasicrystals permitted us to investigate band-gap properties as a function of increasing rotational isotropy. We present results from numerical simulations proving that the PBG observed experimentally for HUDS at low index contrast has zero density of states. The PBG is associated with the energy difference between complementary resonant modes above and below the gap, with the field predominantly concentrated in the air or in the dielectric. The intrinsic isotropy of HUDS may offer unprecedented flexibilities and freedom in applications (i. e. defect architecture design) not limited by crystalline symmetries.

Salvatore Torquato | Weining Man | Geev Nahal | F. Stillinger | S. Torquato | M. Sigalas | P. Steinhardt | C. Soukoulis | S. Mochrie | C. Caneau | U. Gösele | P. Chaikin | M. Notomi | T. Gmitter | M. Florescu | E. Economou | R. Wehrspohn | L. Botten | J. Pallarès | R. Hillebrand | J. Albert | D. Cassagne | R. Prum | S. Liew | J. Ferré‐Borrull | N. Nicorovici | W. Man | C. Schreck | C. D. de Sterke | V. Saranathan | Paul Chaikin | E. Williamson | S. Hashemizad | B. Leung | Marian Florescu | Kazue Matsuyama | Polin Yadak | Seyed Hashemizad | Eric Williamson | Paul Steinhardt | G. Nahal | E. Yablonovitch | Kazue Matsuyama | Polin Yadak | S. Imagawa | J. Ye | J. Martinez | J. Baker | M. R. Reda Taha | J. N. Winn | T. Niino | R. McPhedran | D. Stroud | A. Scherer | S. Johnson | Joannopoulos | P. Yadak | D. Liner | P. Chaikin | A. Myc | H. Noh | H. Cao | C. Divin | Y. He | L. Yang | T. B. Norris | K. Matsuyama | H. Li | Z. Liu | E. W. Seeling | Experimental | J.-G Park | J D Forster | C. S. O 'hern | E. R. Dufresne | S. Noda | M. F. Su | Effects | C. T. Chan | K. Suzuki | K. Edagawa | Y. Zhang | G. Fei | P. Steinhardt | S. Torquato | M. Florescu | S John | I El-Kady | T. S. Chan | M C Rechtsman | H.-C Jeong | K Edagawa | S. Kanoko | K. Morita | Y. Kagawa | W Man | E Lidorikis | A A Asatryan | P. A. Robinson | M A Kaliteevski | J Choi | Y. Luo | J. Schilling | Y Su | P. Yan | G. L. Shang | L. Zhang | Anodic Alumina Photonic Crystal Heterostructures | J. Opt | Soc | M M Rahman | L. Marsal | R Batten | X C Zeng | D. J. Bergman | P. M. Hui | R. D. Mead | K M Ho | R. Biswas | K Ishizaki | M. Koumura | K. Gondaira | H Cao | Y. G. Zhao | S. T. Ho | Q. H. Wang | R. P. H. Chang | Y B Guo | F. L. Terry | I Schnitzer

[1]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[2]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[3]  Zeng,et al.  Effective-medium theory for weakly nonlinear composites. , 1988, Physical review. B, Condensed matter.

[4]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[5]  Che Ting Chan,et al.  Photonic band gaps in three dimensions: New layer-by-layer periodic structures , 1994 .

[6]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[7]  Che Ting Chan,et al.  Photonic Band Gaps in Two Dimensional Photonic Quasicrystals , 1998 .

[8]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[9]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[10]  E. N. Economou,et al.  Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials , 2000 .

[11]  Nicorovici,et al.  Effects of geometric and refractive index disorder on wave propagation in two-dimensional photonic crystals , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  A Z Genack,et al.  Photon localization in resonant media. , 2001, Physical review letters.

[13]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[14]  J. Albert,et al.  Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal , 2002 .

[15]  Alongkarn Chutinan,et al.  Diffractionless flow of light in all-optical microchips. , 2003, Physical review letters.

[16]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Reinald Hillebrand,et al.  Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers , 2003 .

[18]  S Enoch,et al.  Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice. , 2005, Physical review letters.

[19]  M. Megens,et al.  Experimental measurement of the photonic properties of icosahedral quasicrystals , 2005, Nature.

[20]  M. M. Reda Taha,et al.  Application of photonic crystals in submicron damage detection and quantification , 2006 .

[21]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[22]  Masaya Notomi,et al.  Photonic amorphous diamond structure with a 3D photonic band gap. , 2008, Physical review letters.

[23]  Yunbo Guo,et al.  Sensitive molecular binding assay using a photonic crystal structure in total internal reflection. , 2008, Optics express.

[24]  Salvatore Torquato,et al.  Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials , 2008, 0803.1442.

[25]  S. Torquato,et al.  Optimized structures for photonic quasicrystals. , 2008, Physical review letters.

[26]  Chase E. Zachary,et al.  Hyperuniformity in point patterns and two-phase random heterogeneous media , 2009, 0910.2172.

[27]  Salvatore Torquato,et al.  Complete band gaps in two-dimensional photonic quasicrystals , 2009, 1007.3555.

[28]  Salvatore Torquato,et al.  Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.

[29]  Hui Cao,et al.  Biomimetic Isotropic Nanostructures for Structural Coloration , 2009, Advanced materials.

[30]  S. Torquato,et al.  Experimental observation of photonic bandgaps in hyperuniform disordered material , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  Masaya Notomi,et al.  Photonic band-gap formation, light diffusion, and localization in photonic amorphous diamond structures , 2010 .

[32]  E. Villermaux,et al.  On two-dimensional foam ageing , 2011, Journal of Fluid Mechanics.

[33]  Mohammad Mahbubur Rahman,et al.  Photonic stop bands of two‐dimensional quasi‐random structures based on macroporous silicon , 2011 .

[34]  Lide Zhang,et al.  Anodic alumina photonic crystal heterostructures , 2011 .

[35]  Katsuyoshi Suzuki,et al.  Realization of three-dimensional guiding of photons in photonic crystals , 2013, Nature Photonics.

[36]  Salvatore Torquato,et al.  Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids , 2013, Proceedings of the National Academy of Sciences.

[37]  D. Wiersma,et al.  Photon management in two-dimensional disordered media , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[38]  Salvatore Torquato,et al.  Optical cavities and waveguides in hyperuniform disordered photonic solids , 2013, 1311.2446.