THE HD 40307 PLANETARY SYSTEM: SUPER-EARTHS OR MINI-NEPTUNES?

Three planets with minimum masses less than 10 M⊕ orbit the star HD 40307, suggesting these planets may be rocky. However, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. Here we exploit various dynamical features of the system in order to assess the physical properties of the planets. Observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 10−4. Also, planets b and c are so close to the star that tidal effects are significant. If planet b has tidal parameters similar to the terrestrial planets in the solar system and a remnant eccentricity larger than 10−3, then, going back in time, the system would have been unstable within the lifetime of the star (which we estimate to be 6.1 ± 1.6 Gyr). Moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic Io, on a per unit surface area basis. If planet b is not terrestrial, e.g., Neptune-like, these physical constraints would not apply. This analysis suggests the planets are not terrestrial-like, and are more like our giant planets. In either case, we find that the planets probably formed at larger radii and migrated early-on (via disk interactions) into their current orbits. This study demonstrates how the orbital and dynamical properties of exoplanet systems may be used to constrain the planets' physical properties.

[1]  O. Hubickyj,et al.  Models of the in Situ Formation of Detected Extrasolar Giant Planets , 1998 .

[2]  Frederic A. Rasio,et al.  TIDAL EVOLUTION OF CLOSE-IN PLANETS , 2010, 1007.4785.

[3]  Eric Stempels,et al.  Cool Stars, Stellar Systems and the Sun. , 2009 .

[4]  F. Ciesla Two-dimensional transport of solids in viscous protoplanetary disks , 2008, 0812.3916.

[5]  A. Bloch,et al.  MEAN MOTION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS WITH TURBULENCE, INTERACTIONS, AND DAMPING , 2008, 0810.4076.

[6]  R. Greenberg,et al.  Tidal heating of terrestrial extrasolar planets and implications for their habitability , 2008, 0808.2770.

[7]  A. Bloch,et al.  Turbulence Implies that Mean Motion Resonances are Rare , 2008 .

[8]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[9]  R. Greenberg,et al.  Tides and the evolution of planetary habitability. , 2008, Astrobiology.

[10]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 Super-Earths (4 , 2008, 0806.4587.

[11]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[12]  H. Hussmann,et al.  Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited , 2007, 0712.1156.

[13]  Avi M. Mandell,et al.  Observable consequences of planet formation models in systems with close-in terrestrial planets , 2007, 0711.2015.

[14]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[15]  R. Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2007, Proceedings of the International Astronomical Union.

[16]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[17]  Drake Deming,et al.  Spitzer Transit and Secondary Eclipse Photometry of GJ 436b , 2007, 0707.2778.

[18]  D. Hamilton,et al.  Orbital resonances in the inner neptunian system: I. The 2:1 Proteus–Larissa mean-motion resonance , 2007 .

[19]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[20]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[21]  D. Queloz,et al.  The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M{⊕}) in a 3-planet system , 2007, 0704.3841.

[22]  J. Papaloizou,et al.  Migration and the Formation of Systems of Hot Super-Earths and Neptunes , 2006, astro-ph/0609779.

[23]  M. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006, astro-ph/0612671.

[24]  A. Dobrovolskis Spin states and climates of eccentric exoplanets , 2006 .

[25]  R. P. Butler,et al.  Catalog of Nearby Exoplanets , 2006, astro-ph/0607493.

[26]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[27]  R. P. Butler,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876 , 2005, astro-ph/0510508.

[28]  D. O. Astronomy,et al.  Effects of mass loss for highly-irradiated giant planets , 2005, astro-ph/0508591.

[29]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[30]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[31]  D. Lin,et al.  On the Survival of Short-Period Terrestrial Planets , 2004, astro-ph/0406677.

[32]  Marc J. Kuchner,et al.  A Minimum-Mass Extrasolar Nebula , 2004, astro-ph/0405536.

[33]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[34]  T. Quinn,et al.  The (In)stability of Planetary Systems , 2004, astro-ph/0401171.

[35]  M. Miesch,et al.  The Internal Rotation of the Sun , 2003 .

[36]  M. Ossendrijver,et al.  The solar dynamo , 2003 .

[37]  S. Barnes On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology , 2003, astro-ph/0303631.

[38]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[39]  David P. O'Brien,et al.  A melt-through model for chaos formation on Europa , 2002 .

[40]  K. Aksnes,et al.  Secular Acceleration of Io Derived from Mutual Satellite Events , 2001 .

[41]  D. Fischer,et al.  Excitation of Orbital Eccentricities of Extrasolar Planets by Repeated Resonance Crossings , 2001, astro-ph/0110384.

[42]  S. Peale,et al.  Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets , 2001, astro-ph/0108104.

[43]  K. Nakazawa,et al.  Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited , 2001 .

[44]  J. Papaloizou,et al.  On disc driven inward migration of resonantly coupled planets with application to the system around GJ876 , 2001, astro-ph/0104432.

[45]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[46]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[47]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[48]  J. Williams,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[49]  D. Hamilton A Comparison of Lorentz, Planetary Gravitational, and Satellite Gravitational Resonances , 1994 .

[50]  E. Parker A solar dynamo surface wave at the interface between convection and nonuniform rotation , 1993 .

[51]  D. Soderblom,et al.  The chromospheric emission-age relation for stars of the lower main sequence and its implications for the star formation rate , 1991 .

[52]  D. Banfield,et al.  A dynamical history of the inner Neptunian satellites , 1991 .

[53]  N. O. Weiss,et al.  The relation between stellar rotation rate and activity cycle periods , 1984 .

[54]  R. Siever The Dynamic Earth. , 1983 .

[55]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[56]  Kurt Lambeck,et al.  Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[57]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[58]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[59]  D. Hamilton,et al.  Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina , 2008 .

[60]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[61]  G. Davies,et al.  Dynamic Earth: Interior , 1999 .

[62]  Thomas J. Ahrens,et al.  Global earth physics a handbook of physical constants , 1995 .

[63]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[64]  Steven Soter,et al.  Q in the solar system , 1966 .