Solvent diffusion in amorphous glassy polymers

In this article, a mathematical model is proposed for predicting solvent self-diffusion coefficients in amorphous glassy polymers based on free volume theory. The basis of this new model involves consideration of the plasticization effects induced by small molecular solvents to correctly estimate the hole-free volume variation above and below the glass-transition temperature. Solvent mutual-diffusion coefficients are calculated using free volume parameters determined as in the original theory. Only one parameter, which can be predicted by thermodynamic theory, is introduced to express the plasticization effect. Thus, this model permits the prediction of diffusion coefficients without adjustable parameters. Comparison of the values calculated by this new model with the present experimental data, including benzene, toluene, ethyl benzene, methyl acetate, and methyl ethyl ketone (MEK) in polystyrene (PS) and poly(methyl methacrylate) (PMMA), has been performed, and the results show good agreement between the predicted and measured values. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 846–856, 2000

[1]  S. Nakao,et al.  Membrane Design for Pervaporation or Vapor Permeation Separation Using a Filling-Type Membrane Concept , 1998 .

[2]  R. Kirchheim,et al.  Diffusion of Small molecules in glassy polymers , 1997 .

[3]  S. Hong Predictive Methods To Estimate Solvent Free-Volume Parameters and Diffusion Coefficients in Polymer/Solvent Systems , 1997 .

[4]  W. Koros,et al.  Free-Volume Hole Properties of Gas-Exposed Polycarbonate Studied by Positron Annihilation Lifetime Spectroscopy , 1996 .

[5]  S. Hong Predicting ability of free‐volume theory for solvent self‐diffusion coefficients in rubbers , 1996 .

[6]  S. Nakao,et al.  Evidence and mechanisms of filling polymerization by plasma-induced graft polymerization , 1996 .

[7]  R. Danner,et al.  Prediction of polymer‐solvent phase equilibria by a modified group‐contribution EOS , 1996 .

[8]  C. Castellano,et al.  Glass temperature depression of polymer by use of mixed solvents: A colligative property , 1996 .

[9]  S. Hong Prediction of Polymer/Solvent Diffusion Behavior Using Free-Volume Theory , 1995 .

[10]  C. Durning,et al.  Linear viscoelastic diffusion in the poly(styrene)-ethylbenzene system : comparison between theory and experiment , 1994 .

[11]  J. S. Vrentas,et al.  Solvent self-diffusion in glassy polymer-solvent systems , 1994 .

[12]  J. S. Vrentas,et al.  Solvent self-diffusion in rubbery polymer-solvent systems , 1994 .

[13]  Y. Jean,et al.  Direct measurement of free‐volume hole distributions in polymers by using a positronium probe , 1992 .

[14]  I. Sanchez,et al.  Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents , 1992 .

[15]  J. S. Vrentas,et al.  Fickian diffusion in glassy polymer-solvent systems , 1992 .

[16]  Y. Jean,et al.  Free-volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence , 1992 .

[17]  D. Kee,et al.  A computer-aided experimental setup for studying sorption kinetics , 1992 .

[18]  弘勝 舛岡,et al.  ガラス転移温度以下でのポリスチレン中へのベンゼン, トルエン, シクロヘキサン蒸気の溶解度 , 1989 .

[19]  D. R. Paul,et al.  Gas sorption and permeation in poly(ethyl methacrylate) , 1989 .

[20]  T. Hirose,et al.  Sorption and dilation in poly(ethyl methacrylate)–carbon dioxide system , 1989 .

[21]  S. A. Stern,et al.  The effect of plasticization on the transport of gases in and through glassy polymers , 1989 .

[22]  T. Hirose,et al.  Sorptive dilation of poly(vinyl benzoate) and poly(vinyl butyral) by carbon dioxide , 1988 .

[23]  J. S. Vrentas,et al.  Influence of the glass transition on solvent self-diffusion in amorphous polymers , 1988 .

[24]  D. R. Paul,et al.  Sorption and transport of CO2 in PVF2/PMMA Blends , 1986 .

[25]  C. Panayiotou,et al.  Thermodynamics of Polymer–Polymer–Solvent and Block Copolymer–Solvent Systems I. Experimental Measurements , 1984 .

[26]  T. Chow Molecular Interpretation of the Glass Transition Temperature of Polymer-Diluent Systems , 1980 .

[27]  W. Koros,et al.  Small Molecule Migration in Products Derived from Glassy Polymers , 1979 .

[28]  P. Couchman Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends , 1978 .

[29]  P. Tait,et al.  Comparative studies on the use of gas chromatographic and vapour pressure techniques for the determination of the interaction energy parameter , 1977 .

[30]  J. L. Duda,et al.  Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory , 1977 .

[31]  J. L. Duda,et al.  Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight , 1977 .

[32]  H. Odani,et al.  Diffusion in Glassy Polymers. III. Temperature Dependence and Solvent Effects , 1966 .

[33]  J. H. Gibbs,et al.  Molecular interpretation of glass temperature depression by plasticizers , 1963 .

[34]  H. Odani,et al.  Diffusion in Glassy Polymers. II. Effects of Polymer-penetrant Interaction ; Diffusion of Ethyl Methyl Ketone in Atactic Polystyrene , 1961 .

[35]  H. Fujita,et al.  SUCCESSIVE DIFFERENTIAL ABSORPTIONS OF VAPORS BY GLASSY POLYMERS , 1960 .

[36]  F. Long,et al.  Diffusion of Benzene and Methylene Chloride Vapors into Polystyrene1,2 , 1953 .

[37]  J. Fried,et al.  Statistical thermodynamics of the glass transition: 1. Effect of pressure and diluent concentration , 1997 .

[38]  M. Paulaitis,et al.  Molecular thermodynamic model for solvent-induced glass transitions in polymer—supercritical fluid systems , 1994 .

[39]  J. S. Vrentas,et al.  Evaluation of free‐volume theories for solvent self‐diffusion in polymer–solvent systems , 1993 .

[40]  William J. Koros,et al.  Pure and mixed gas sorption of carbon dioxide and ethylene in poly(methyl methacrylate) , 1984 .

[41]  F. E. Karasz,et al.  The influence of thermal properties on the glass transition temperature in styrene/divinylbenzene network–diluent systems , 1983 .

[42]  F. E. Karasz,et al.  A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures , 1978 .

[43]  Wolf R. Vieth,et al.  Dual sorption theory , 1976 .

[44]  S. Canagaratna,et al.  Thermodynamics of solutions of polymers of α-methyl styrene in α-methyl styrene and cumene , 1966 .

[45]  R. M. Barrer,et al.  Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber , 1958 .