On a functional contraction method

Methods for proving functional limit laws are developed for sequences of stochastic processes which allow a recursive distributional decomposition either in time or space. Our approach is an extension of the so-called contraction method to the space C[0,1] of continuous functions endowed with uniform topology and the space D[0,1] of cadlag functions with the Skorokhod topology. The contraction method originated from the probabilistic analysis of algorithms and random trees where characteristics satisfy natural distributional recurrences. It is based on stochastic fixed-point equations, where probability metrics can be used to obtain contraction properties and allow the application of Banach’s fixed-point theorem. We develop the use of the Zolotarev metrics on the spaces C[0,1] and D[0,1] in this context. Applications are given, in particular, a short proof of Donsker’s functional limit theorem is derived and recurrences arising in the probabilistic analysis of algorithms are discussed.

[1]  G. Dall'aglio Sugli estremi dei momenti delle funzioni di ripartizione doppia , 1956 .

[2]  A Functional Combinatorial Central Limit Theorem , 2009, 0907.0347.

[3]  On the average of a certain Wiener functional and a related limit theorem in calculus of probability , 1946 .

[4]  V. Zolotarev Approximation of Distributions of Sums of Independent Random Variables with Values in Infinite-Dimensional Spaces , 1977 .

[5]  M. Ledoux A remark on the central limit theorem in Banach spaces , 1984 .

[6]  On a relation between Levy — Prohorov metrics and ideal metrics , 1983 .

[7]  L. Rüschendorf On stochastic recursive equations of sum and max type , 2006, Journal of Applied Probability.

[8]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[9]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[10]  V. Zolotarev IDEAL METRICS IN THE PROBLEMS OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS , 1979 .

[11]  R. Dudley,et al.  The central limit theorem and ε-entropy , 1969 .

[12]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[13]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[14]  Ronald L. Rivest,et al.  Partial-Match Retrieval Algorithms , 1976, SIAM J. Comput..

[15]  Some probability limit theorems , 1949 .

[16]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[17]  Rüschendorf Ludger,et al.  A limit theorem for recursively defined processes in L , 2007 .

[18]  P. Erdös,et al.  On the number of positive sums of independent random variables , 1947 .

[19]  Luc Devroye,et al.  Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.

[20]  R. M. Dudley,et al.  Weak Convergence of Probabilities on Nonseparable Metric Spaces and Empirical Measures on Euclidean Spaces , 1966 .

[21]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[22]  M. Denker,et al.  SOME CONTRIBUTIONS TO CHERNOFF-SAVAGE THEOREMS , 1985 .

[23]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[24]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[25]  Philippe Flajolet,et al.  Search costs in quadtrees and singularity perturbation asymptotics , 1994, Discret. Comput. Geom..

[26]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[27]  Vladimir M. Zolotarev,et al.  Modern Theory of Summation of Random Variables , 1997 .

[28]  J. Doob Heuristic Approach to the Kolmogorov-Smirnov Theorems , 1949 .

[29]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[30]  Luc Devroye,et al.  Exponential Bounds for the Running Time of a Selection Algorithm , 1984, J. Comput. Syst. Sci..

[31]  Gaston H. Gonnet,et al.  Analytic variations on quadtrees , 2005, Algorithmica.

[32]  The sum of two measurable functions , 2005, math/0512534.

[33]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[34]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[35]  U. Rösler A fixed point theorem for distributions , 1992 .

[36]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[37]  P. Major On the invariance principle for sums of independent identically distributed random variables , 1978 .

[38]  Gerold Alsmeyer,et al.  The functional equation of the smoothing transform , 2009, 0906.3133.

[39]  Uwe Rr Osler,et al.  A Limit Theorem for "quicksort" , 1999 .

[40]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[41]  V. Zolotarev METRIC DISTANCES IN SPACES OF RANDOM VARIABLES AND THEIR DISTRIBUTIONS , 1976 .

[42]  Ludger Rüschendorf,et al.  Rates of convergence for Quicksort , 2002, J. Algorithms.

[43]  Richard M. Dudley,et al.  Measures on Non-Separable Metric Spaces , 1967 .

[44]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[45]  S. Janson,et al.  The size of random fragmentation trees , 2006, math/0609350.

[46]  Ralph Neininger,et al.  On the contraction method with degenerate limit equation , 2004 .

[47]  Jon Louis Bentley,et al.  Analysis of Range Searches in Quad Trees , 1975, Inf. Process. Lett..

[48]  A. Barbour Stein's method for diffusion approximations , 1990 .

[49]  P. Erdös,et al.  On certain limit theorems of the theory of probability , 1946 .

[50]  Günter Rudolph,et al.  Stochastic Convergence , 2012, Handbook of Natural Computing.

[51]  Hsien-Kuei Hwang,et al.  LIMIT THEOREMS FOR THE NUMBER OF MAXIMA IN RANDOM SAMPLES FROM PLANAR REGIONS , 2001 .

[52]  S. Janson,et al.  Higher moments of Banach space valued random variables , 2012, 1208.4272.

[53]  Uwe Rr Osler The Contraction Method for Recursive Algorithms , 1999 .

[54]  L. Rüschendorf,et al.  LIMIT LAWS FOR PARTIAL MATCH QUERIES IN QUADTREES , 2001 .

[55]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[56]  A. Friedman Foundations of modern analysis , 1970 .

[57]  Luc Devroye,et al.  An Analysis of Random d-Dimensional Quad Trees , 1990, SIAM J. Comput..

[58]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[59]  B. Pittel Normal convergence problem? Two moments and a recurrence may be the clues , 1999 .

[60]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[61]  S. Rachev,et al.  Probability metrics and recursive algorithms , 1995, Advances in Applied Probability.

[62]  Luc Devroye,et al.  Expected worst-case partial match in random quadtries , 2004, Discret. Appl. Math..

[63]  A. A. Jurinskii A Smoothing Inequality for Estimates of the Lévy–Prokhorov Distance , 1975 .

[64]  Per Enflo,et al.  A counterexample to the approximation problem in Banach spaces , 1973 .

[65]  Uwe Rösler,et al.  On the analysis of stochastic divide and conquer algorithms , 2001, Algorithmica.

[66]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[67]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[68]  V. Bentkus,et al.  Estimates of the Distance between Sums of Independent Random Elements in Banach Spaces , 1985 .

[69]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[70]  W. Pestman Measurability of linear operators in the Skorokhod topology , 1995 .

[71]  Svante Janson,et al.  Quicksort asymptotics , 2002, J. Algorithms.

[72]  S. Janson,et al.  A functional limit theorem for the profile of search trees. , 2006, math/0609385.

[73]  Hsien-Kuei Hwang,et al.  Partial Match Queries in Random k-d Trees , 2006, SIAM J. Comput..

[74]  E. Giné,et al.  On the central limit theorem in Hilbert space. , 1980 .

[75]  Nicolas Broutin,et al.  Partial match queries in random quadtrees , 2011, SODA.

[76]  Mireille Régnier A Limiting Distribution for Quicksort , 1989, RAIRO Theor. Informatics Appl..

[77]  V. V. Senatov An Estimate of the Lévy–Prokhorov Metric , 1985 .

[78]  Nicolas Curien,et al.  Partial match queries in two-dimensional quadtrees: a probabilistic approach , 2010, Advances in Applied Probability.

[79]  Lionel Vaux,et al.  The differential ? -calculus , 2007 .

[80]  Ralph Neininger,et al.  On a multivariate contraction method for random recursive structures with applications to Quicksort , 2001, Random Struct. Algorithms.

[81]  David Aldous RECURSIVE SELF-SIMILARITY FOR RANDOM TREES, RANDOM TRIANGULATIONS AND BROWNIAN EXCURSION , 1994 .

[82]  Nicolas Broutin,et al.  A limit process for partial match queries in random quadtrees , 2012, ArXiv.

[83]  G. Pisier,et al.  The Law of Large Numbers and the Central Limit Theorem in Banach Spaces , 1976 .

[84]  G. Pisier Grothendieck's Theorem, past and present , 2011, 1101.4195.

[85]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[86]  Philippe Flajolet,et al.  Partial match retrieval of multidimensional data , 1986, JACM.

[87]  J. Doob Stochastic processes , 1953 .

[88]  E. Lukács,et al.  On a linear form whose distribution is identical with that of a monomial , 1965 .

[89]  Ralph Neininger Stochastische Analyse von Algorithmen, Fixpunktgleichungen und ideale Metriken , 2004 .

[90]  R. Sikorski,et al.  Measures in non-separable metric spaces , 1948 .

[91]  V. Zolotarev Ideal Metrics in the Problem of Approximating Distributions of Sums of Independent Random Variables , 1978 .