An embedded Dirichlet formulation for 3D continua

This paper presents a new approach for imposing Dirichlet conditions weakly on non-fitting finite element meshes. Such conditions, also called embedded Dirichlet conditions, are typically, but not exclusively, encountered when prescribing Dirichlet conditions in the context of the eXtended Finite Element Method (XFEM). The methods key idea is the use of an additional stress field as the constraining Lagrange multiplier function. The resulting mixed/hybrid formulation is applicable to 1D, 2D and 3D problems. The method does not require stabilization for the Lagrange multiplier unknowns and allows the complete condensation of these unknowns on the element level. Furthermore, only non- zero diagonal-terms are present in the tangent stiffness, which allows the straight-forward application of state-of-the-art iterative solvers, like Algebraic Multigrid (AMG) techniques. Within this paper, the method is applied to the linear momentum equation of an elastic continuum and to the transient, incompressible Navier-Stokes equations. Steady and unsteady benchmark computations show excellent agreement with reference values. The general formulation presented in this paper can also be applied to other continuous field problems.

[1]  G. B. Jeffery L. THE TWO-DIMENSIONAL STEADY MOTION OF A VISCOUS FLUID , 2009 .

[2]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[3]  Andreas Zilian,et al.  The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction , 2008 .

[4]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[5]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[6]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[7]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[8]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[9]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[10]  Gauss‐Lobatto integration of high precision tetrahedral elements , 1982 .

[11]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[12]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..

[13]  Marek Behr,et al.  Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows , 1993 .

[14]  G. Hamel Spiralförmige Bewegungen zäher Flüssigkeiten , 1917 .

[15]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[16]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[17]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[18]  Thomas-Peter Fries,et al.  A localized mixed‐hybrid method for imposing interfacial constraints in the extended finite element method (XFEM) , 2009 .

[19]  Grégory Legrain,et al.  Stability of incompressible formulations enriched with X-FEM , 2008 .

[20]  P. Hemker,et al.  Discontinuous Galerkin Discretization with Embedded Boundary Conditions , 2003 .

[21]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[22]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[23]  Paul Steinmann,et al.  A hybrid discontinuous Galerkin/interface method for the computational modelling of failure , 2004 .

[24]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[25]  Louis Rosenhead,et al.  The steady two-dimensional radial flow of viscous fluid between two inclined plane walls , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  John E. Dolbow,et al.  Residual-free bubbles for embedded Dirichlet problems , 2008 .

[27]  A. Lew,et al.  A discontinuous‐Galerkin‐based immersed boundary method , 2008 .

[28]  Wolfgang A. Wall,et al.  Enhancement of fixed‐grid methods towards complex fluid–structure interaction applications , 2008 .

[29]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[30]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[31]  L. Ridgway Scott,et al.  Implementing and using high-order finite element methods , 1994 .

[32]  W. Wall,et al.  Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas , 2008 .

[33]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[34]  Wolfgang A. Wall,et al.  An XFEM Based Fixed-Grid Approach for 3D Fluid-Structure Interaction , 2011 .

[35]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .