Estimation in functional linear quantile regression

This paper studies estimation in functional linear quantile regression in which the dependent variable is scalar while the covariate is a function, and the conditional quantile for each fixed quantile index is modeled as a linear functional of the covariate. Here we suppose that covariates are discretely observed and sampling points may differ across subjects, where the number of measurements per subject increases as the sample size. Also, we allow the quantile index to vary over a given subset of the open unit interval, so the slope function is a function of two variables: (typically) time and quantile index. Likewise, the conditional quantile function is a function of the quantile index and the covariate. We consider an estimator for the slope function based on the principal component basis. An estimator for the conditional quantile function is obtained by a plug-in method. Since the so-constructed plug-in estimator not necessarily satisfies the monotonicity constraint with respect to the quantile index, we also consider a class of monotonized estimators for the conditional quantile function. We establish rates of convergence for these estimators under suitable norms, showing that these rates are optimal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. Empirical choice of the cutoff level is studied by using simulations.

[1]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[2]  P. Sarda,et al.  Ozone Pollution Forecasting Using Conditional Mean and Conditional Quantiles with Functional Covariates , 2007 .

[3]  T. Hohage,et al.  Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .

[4]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[5]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[6]  P. Kokoszka,et al.  Weakly dependent functional data , 2010, 1010.0792.

[7]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[8]  Joel L. Horowitz,et al.  Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .

[9]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[10]  V. Chernozhukov,et al.  Nonparametric Instrumental Variable Estimators of Structural Quantile Effects , 2011 .

[11]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[12]  Ming Yuan,et al.  GACV for quantile smoothing splines , 2006, Comput. Stat. Data Anal..

[13]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[14]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[15]  Pascal Sarda,et al.  Quantile regression when the covariates are functions , 2005, math/0703056.

[16]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[17]  Gareth M. James,et al.  Functional linear regression that's interpretable , 2009, 0908.2918.

[18]  P. Sarda,et al.  Smoothing splines estimators for functional linear regression , 2009, 0902.4344.

[19]  Penalized estimators for non linear inverse problems , 2010 .

[20]  Frédéric Ferraty,et al.  Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon , 2005 .

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  Demian Pouzo,et al.  Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments , 2008 .

[23]  M. Yuan,et al.  A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.

[24]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[25]  E. Giné,et al.  On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals , 2001 .

[26]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[27]  Aurore Delaigle,et al.  Methodology and theory for partial least squares applied to functional data , 2012, 1205.6367.

[28]  M. Vidyasagar,et al.  An Algorithm for $l_1 $-Norm Minimization with Application to Nonlinear $l_1 $-Approximation , 1979 .

[29]  Kehui Chen,et al.  Conditional quantile analysis when covariates are functions, with application to growth data , 2012 .

[30]  P. Sarda,et al.  Functional linear model , 1999 .

[31]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[32]  V. Koltchinskii,et al.  Concentration inequalities and asymptotic results for ratio type empirical processes , 2006, math/0606788.

[33]  Otmar Scherzer,et al.  Local ill-posedness and source conditions of operator equations in Hilbert spaces , 1998 .

[34]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[35]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[36]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[37]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .