Estimation in functional linear quantile regression
暂无分享,去创建一个
[1] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[2] P. Sarda,et al. Ozone Pollution Forecasting Using Conditional Mean and Conditional Quantiles with Functional Covariates , 2007 .
[3] T. Hohage,et al. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .
[4] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[5] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[6] P. Kokoszka,et al. Weakly dependent functional data , 2010, 1010.0792.
[7] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[8] Joel L. Horowitz,et al. Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .
[9] Q. Shao,et al. On Parameters of Increasing Dimensions , 2000 .
[10] V. Chernozhukov,et al. Nonparametric Instrumental Variable Estimators of Structural Quantile Effects , 2011 .
[11] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[12] Ming Yuan,et al. GACV for quantile smoothing splines , 2006, Comput. Stat. Data Anal..
[13] Denis Bosq,et al. Linear Processes in Function Spaces , 2000 .
[14] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[15] Pascal Sarda,et al. Quantile regression when the covariates are functions , 2005, math/0703056.
[16] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[17] Gareth M. James,et al. Functional linear regression that's interpretable , 2009, 0908.2918.
[18] P. Sarda,et al. Smoothing splines estimators for functional linear regression , 2009, 0902.4344.
[19] Penalized estimators for non linear inverse problems , 2010 .
[20] Frédéric Ferraty,et al. Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon , 2005 .
[21] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[22] Demian Pouzo,et al. Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments , 2008 .
[23] M. Yuan,et al. A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.
[24] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[25] E. Giné,et al. On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals , 2001 .
[26] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[27] Aurore Delaigle,et al. Methodology and theory for partial least squares applied to functional data , 2012, 1205.6367.
[28] M. Vidyasagar,et al. An Algorithm for $l_1 $-Norm Minimization with Application to Nonlinear $l_1 $-Approximation , 1979 .
[29] Kehui Chen,et al. Conditional quantile analysis when covariates are functions, with application to growth data , 2012 .
[30] P. Sarda,et al. Functional linear model , 1999 .
[31] B. Silverman,et al. Functional Data Analysis , 1997 .
[32] V. Koltchinskii,et al. Concentration inequalities and asymptotic results for ratio type empirical processes , 2006, math/0606788.
[33] Otmar Scherzer,et al. Local ill-posedness and source conditions of operator equations in Hilbert spaces , 1998 .
[34] R. Koenker,et al. The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .
[35] Victor Chernozhukov,et al. Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.
[36] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[37] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .