STERIC MASS ACTION MODEL FOR LACTOFERRIN ADSORPTION IN CRYOGEL WITH IMMOBILIZED COPPER IONS

Parameters of equilibrium adsorption obtained from experiments using immobilized metal affinity chromatography (IMAC) were used to evaluate the applicability of the steric mass-action (SMA) model to describe the adsorption of lactoferrin to cryogel resin under different conditions. The adsorption of lactoferrin on continuous supermacroporous cryogel with immobilized Cu2+ ions was evaluated in batch adsorption experiments at different pH (6-8) and temperature (293-313 K) values. Estimated values of the equilibrium constant (K) and characteristic number of binding sites (n) showed that these parameters decreased with increasing ionic strength, pH and temperature, while the nonlinear parameter, the steric factor (σ), increased with increasing ionic strength and temperature. Expressions correlating these parameters with pH, ionic strength and temperature were then derived.

[1]  Carvalho Bma,et al.  Interaction of Whey Lactoferrin with Copper Immobilized in Polyacrylamide Cryogel , 2014 .

[2]  M. Hearn,et al.  Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins. , 2014, Journal of chromatography. A.

[3]  G. Carvalho,et al.  Direct capture of lactoferrin from cheese whey on supermacroporous column of polyacrylamide cryogel with copper ions. , 2014, Food chemistry.

[4]  L. Carvalho,et al.  Microcalorimetric study of the adsorption of lactoferrin in supermacroporous continuous cryogel with immobilized Cu(2+) ions. , 2013, Journal of chromatography. A.

[5]  T. Ng,et al.  Immobilized metal ion affinity chromatography: a review on its applications , 2012, Applied Microbiology and Biotechnology.

[6]  D. S. Hage,et al.  Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. , 2012, Journal of pharmaceutical and biomedical analysis.

[7]  E. von Lieres,et al.  Optimizing a chromatographic three component separation: a comparison of mechanistic and empiric modeling approaches. , 2012, Journal of chromatography. A.

[8]  A. Denizli,et al.  Immobilized metal affinity monolithic cryogels for cytochrome c purification. , 2012, Colloids and surfaces. B, Biointerfaces.

[9]  J. Bi,et al.  Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules. , 2010, Protein expression and purification.

[10]  G. Wozny,et al.  Optimal determination of steric mass action model parameters for beta-lactoglobulin using static batch experiments. , 2010, Journal of chromatography. A.

[11]  W. Schwarz,et al.  One-step purification and immobilization of His-tagged rhamnosidase for naringin hydrolysis. , 2010 .

[12]  M. Polakovič,et al.  Influence of ligand density on antibody binding capacity of cation-exchange adsorbents. , 2009, Journal of chromatography. A.

[13]  S. González-Chávez,et al.  Lactoferrin: structure, function and applications. , 2009, International journal of antimicrobial agents.

[14]  Junxian Yun,et al.  Adsorption and elution behaviors of bovine serum albumin in metal-chelated affinity cryogel beds , 2008 .

[15]  Andrzej Górak,et al.  Simulation of a human serum albumin downstream process incorporating ion-exchange membrane adsorbers , 2008 .

[16]  E. M. Martín del Valle,et al.  Immobilized Metal‐Ion Affinity Chromatography: Status and Trends , 2007 .

[17]  Hanhua Hu,et al.  Analysis of steric mass-action model for protein adsorption equilibrium onto porous anion-exchange adsorbent , 2006 .

[18]  Bo Mattiasson,et al.  Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices , 2006, Biotechnology and bioengineering.

[19]  V. Gaberc-Porekar,et al.  Potential for Using Histidine Tags in Purification of Proteins at Large Scale , 2005 .

[20]  Z. Su,et al.  Suitability of steric mass-action model for ion-exchange equilibrium of micromolecule , 2005 .

[21]  Adil Denizli,et al.  Cu(II)‐incorporated, histidine‐containing, magnetic‐metal‐complexing beads as specific sorbents for the metal chelate affinity of albumin , 2004 .

[22]  E. K. Ueda,et al.  Current and prospective applications of metal ion-protein binding. , 2003, Journal of chromatography. A.

[23]  Songping Zhang,et al.  A predictive model for salt effects on the dye-ligand affinity adsorption equilibrium of protein , 2003 .

[24]  Yan Sun,et al.  Steric mass-action model for dye-ligand affinity adsorption of protein. , 2002, Journal of chromatography. A.

[25]  Steven M. Cramer,et al.  Synthesis and Characterization of High-Affinity, Low-Molecular-Mass Displacers for Anion-Exchange Chromatography , 1998 .

[26]  W. Jiang,et al.  Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions. , 1996, Analytical biochemistry.

[27]  Steven M. Cramer,et al.  Solute affinity in ion-exchange displacement chromatography , 1996 .

[28]  Steven M. Cramer,et al.  Characterization of non-linear adsorption properties of dextran-based polyelectrolyte displacers in ion-exchange systems , 1993 .

[29]  Steven M. Cramer,et al.  Steric mass‐action ion exchange: Displacement profiles and induced salt gradients , 1992 .

[30]  Sonia Maria Alves Bueno,et al.  Immobilized Metal-ion Affinity Chromatography (imac) Of Biomolecules: Fundamental Aspects And Technological Applications [cromatografia De Afinidade Por Íons Metálicos Imobilizados (imac) De Biomoléculas: Aspectos Fundamentais E Aplicações Tecnológicas] , 2009 .

[31]  M. N. Gupta,et al.  Immobilized Metal Affinity Chromatography without Chelating Ligands: Purification of Soybean Trypsin Inhibitor on Zinc Alginate Beads , 2002, Biotechnology progress.

[32]  Joseph J. Falke,et al.  [16] Purification of proteins using polyhistidine affinity tags , 2000 .

[33]  F. Regnier,et al.  Application of the stoichiometric displacement model of retention to anion-exchange chromatography of nucleic acids. , 1986, Journal of chromatography.

[34]  Fred E. Regnier,et al.  Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts , 1984 .