Numerical simulations of the ionosphere of Mars during a solar flare

[1] Electron densities in planetary ionospheres increase substantially during solar flares in response to the increased solar irradiance at soft X-ray and extreme ultraviolet wavelengths. Here we modify an existing model of the ionosphere of Mars to incorporate time-dependent solar irradiances and use it to simulate ionospheric conditions during the X14.4 and M7.8 solar flares of 15 and 26 April 2001, respectively. Simulations were validated by comparison to Mars Global Surveyor radio occultation measurements of vertical profiles of ionospheric electron density. Adjustments to the model's representation of the neutral atmosphere were required to adequately reproduce the observations before and during these solar flares. An accurate representation of electron-impact ionization, an important process in the lower ionosphere of Mars, is required in order to adequately simulate the doubling of electron densities that can occur in the lower ionosphere of Mars during a solar flare. We used the W-value representation of electron-impact ionization, in which the number of ion-electron pairs created per photon absorbed equals the ratio of the difference between photon energy and the ionization potential of carbon dioxide to the W-value. A range of possible W-values for Mars have been suggested in the literature, and a value of 28 eV led to the best reproduction of flare-affected observations. Simulated enhancements in the electron density are largest and persist the longest in the M1 region. We predict that the peak electron density in the M1 region can exceed that of the M2 region for short periods during intense solar flares.

[1]  Anthony J. Mannucci,et al.  XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models , 2008 .

[2]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[3]  J. Waite,et al.  Atmospheres in the solar system : comparative aeronomy , 2002 .

[4]  M. Mendillo,et al.  Modeling Mars' ionosphere with constraints from same‐day observations by Mars Global Surveyor and Mars Express , 2011 .

[5]  Roberto Orosei,et al.  Observations of Vertical Reflections from the Topside Martian Ionosphere , 2007 .

[6]  I. Batista,et al.  D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars: Comparison with Earth's ionosphere using COSMIC data , 2009 .

[7]  Paul Withers,et al.  Attenuation of radio signals by the ionosphere of Mars: Theoretical development and application to MARSIS observations , 2011 .

[8]  R. Landshoff,et al.  Physics of the Aurora and Airglow , 1961 .

[9]  J. Luhmann,et al.  Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions: Luhmann/Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions , 1992 .

[10]  W. B. Hanson,et al.  Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere , 1988 .

[11]  Sachchidanand Singh,et al.  Ionospheric effects of solar flares at Mars , 2009 .

[12]  D. Gurnett,et al.  Transient layers in the topside ionosphere of Mars , 2008 .

[13]  F. Duru,et al.  Radar Soundings of the Ionosphere of Mars , 2005, Science.

[14]  Bin Chen,et al.  Modeling the responses of the middle latitude ionosphere to solar flares , 2007 .

[15]  M. Mendillo,et al.  Modeling day-to-day ionospheric variability on Mars , 2003 .

[16]  F. Forget,et al.  Study of the Martian Ionosphere with A General Circulation Model , 2011 .

[17]  D. Gurnett,et al.  Introduction to Plasma Physics: Introduction , 2005 .

[18]  A. Aylward,et al.  A fast computation of the secondary ion production in the ionosphere of Mars , 2009 .

[19]  A. Mitra,et al.  Ionospheric effects of solar flares , 1974 .

[20]  A. Emslie,et al.  The Physics of Solar Flares , 2009 .

[21]  Robert E. Johnson,et al.  Energy Deposition in Planetary Atmospheres by Charged Particles and Solar Photons , 2008 .

[22]  T. Woods,et al.  New flare model using recent measurements of the solar ultraviolet irradiance , 2008 .

[23]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[24]  David P. Hinson,et al.  MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere , 2004 .

[25]  Harry P. Warren,et al.  Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments , 2010 .

[26]  Thomas N. Woods,et al.  Flare Irradiance Spectral Model (FISM): Flare component algorithms and results , 2008 .

[27]  O. Witasse,et al.  Solar System Ionospheres , 2008 .

[28]  A. Christou,et al.  The dust trail complex of comet 79P/du Toit-Hartley and meteor outbursts at Mars , 2007 .

[29]  Stephen R. Lewis,et al.  A climate database for Mars , 1999 .

[30]  P. Browning Introduction to Plasma Physics: With Space and Laboratory Applications , 2005 .

[31]  T. Fuller‐Rowell,et al.  Simulations of the upper atmospheres of the terrestrial planets , 2013 .

[32]  J. Fox Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays , 2004 .

[33]  K. G. Budden The propagation of radio waves , 1985 .

[34]  B. Reinisch,et al.  Effects of Solar Flares on the Ionosphere of Mars , 2006, Science.

[35]  Thomas N. Woods,et al.  Flare Irradiance Spectral Model (FISM): Daily component algorithms and results , 2007 .

[36]  H. Le,et al.  Ionospheric response to the X‐class solar flare on 7 September 2005 , 2011 .

[37]  Paul Withers,et al.  A review of observed variability in the dayside ionosphere of Mars , 2009 .

[38]  Da Verner,et al.  Analytic FITS for partial photoionization cross sections. , 1995 .

[39]  F. Forget,et al.  Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM , 2009 .

[40]  J. Lilensten,et al.  Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres , 2011 .

[41]  J. Fox Advances in the Aeronomy of Venus and Mars , 2002 .

[42]  M. Rees,et al.  Time dependent studies of the aurora—II. Spectroscopic morphology , 1973 .

[43]  Raimonds Peterkops Theory of ionization of atoms by electron impact , 1977 .

[44]  F. Forget,et al.  Simulating the density and thermal structure of the middle atmosphere (̃80-130 km) of Mars using the MGCM-MTGCM: A comparison with MEX/SPICAM observations , 2010 .

[45]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[46]  J. Forbes,et al.  Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances , 2009 .

[47]  S. Solomon,et al.  Flare location on the solar disk: Modeling the thermosphere and ionosphere response , 2010 .

[48]  D. Hunten,et al.  Aeronomy of the current Martian atmosphere. , 1992 .

[49]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[50]  W. Tobiska,et al.  New developments in SOLAR2000 for space research and operations , 2006 .

[51]  Gary J. Rottman,et al.  The SOLAR2000 empirical solar irradiance model and forecast tool , 2000 .

[52]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[53]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[54]  S. Bougher,et al.  The Martian Thermosphere-Ionosphere at High and Low Solar Activities , 1996 .

[55]  M. Mendillo,et al.  Incoherent scatter observations of the ionospheric response to a large solar flare , 1974 .

[56]  V. Krasnopolsky Mars' upper atmosphere and ionosphere at low, medium, and high solar activities: Implications for evolution of water , 2002 .

[57]  F. G. Eparvier,et al.  Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments , 2010 .

[58]  Gary J. Rottman,et al.  Solar EUV Experiment (SEE): Mission overview and first results , 2005 .

[59]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[60]  Herman Feshbach,et al.  Physics of the Aurora and Air Glow , 1962 .

[61]  T. Donahue Upper Atmosphere and Ionosphere of Mars , 1966, Science.

[62]  S. C. Garg,et al.  Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite , 2004 .