Inverse Problem for a Class of Two-Dimensional Diffusion Equations with Piecewise Constant Coefficients

In this paper, we consider an inverse problem for a class of two-dimensional diffusion equations with piecewise constant coefficients. This problem is studied using an explicit formula for the relevant spectral measures and an asymptotic expansion of the solution of the diffusion equations. A numerical method that reduces the inverse problem to a sequence of nonlinear least-square problems is proposed and tested on synthetic data.

[1]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[2]  H. Banks,et al.  Estimation of variable coefficients in parabolic distributed systems , 1985 .

[3]  J. Cannon,et al.  Determining Unknown Coefficients in a Nonlinear Heat Conduction Problem , 1973 .

[4]  Gilbert Helmberg,et al.  Introduction to Spectral Theory in Hilbert Space , 1970 .

[5]  Paul DuChateau,et al.  An Inverse Problem for a Nonlinear Diffusion Equation , 1980 .

[6]  C. Kravaris,et al.  Identifiability of spatially-varying conductivity from point observation as an inverse Sturm-Liouville problem , 1986 .

[7]  A. Ramm Inverse scattering on half-line , 1988 .

[8]  G. Chavent,et al.  Identification de la Non-Linearité D'Une équation Parabolique Quasilineaire , 1974 .

[9]  Guy Chavent On the uniqueness of local minima for general abstract nonlinear least-squares problems , 1988 .

[10]  Alan Pierce Unique Identification of Eigenvalues and Coefficients in a Parabolic Problem , 1979 .

[11]  John A. Macbain,et al.  Inversion theory for parameterized diffusion problem , 1987 .

[12]  K. Kunisch,et al.  Regularity properties and strict complementarity of the output-least-squares approach to parameter estimation in parabolic equations , 1989 .

[13]  F. Zirilli,et al.  The numerical solution of an inverse problem for a class of one-dimensional diffusion equations with piecewise constant coefficients , 1992 .

[14]  M. M. Lavrentʹev,et al.  One-Dimensional Inverse Problems of Mathematical Physics , 1986 .