Capacity-Achieving Feedback Schemes for Gaussian Finite-State Markov Channels With Channel State Information

In this paper, we propose capacity-achieving communication schemes for Gaussian finite-state Markov channels subject to an average channel input power constraint, under the assumption that the transmitters can have access to delayed noiseless output feedback as well as instantaneous or delayed channel state information. We show that the proposed schemes reveals connections between feedback communication and feedback control.

[1]  Andrea J. Goldsmith,et al.  Capacity of Time-Varying Channels With Causal Channel Side Information , 1997, IEEE Transactions on Information Theory.

[2]  J. Pieter M. Schalkwijk,et al.  An upper bound to the capacity of the band-limited Gaussian autoregressive channel with noiseless feedback , 1974, IEEE Trans. Inf. Theory.

[3]  Harish Viswanathan Capacity of Markov Channels with Receiver CSI and Delayed Feedback , 1999, IEEE Trans. Inf. Theory.

[4]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[5]  Pravin Varaiya,et al.  Capacity of fading channels with channel side information , 1997, IEEE Trans. Inf. Theory.

[6]  Lawrence H. Ozarow,et al.  Upper bounds on the capacity of Gaussian channels with feedback , 1990, IEEE Trans. Inf. Theory.

[7]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[8]  Anant Sahai,et al.  Anytime information theory , 2001 .

[9]  Sekhar Tatikonda,et al.  The Capacity of Channels With Feedback , 2006, IEEE Transactions on Information Theory.

[10]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.

[11]  Aviv Rosenzweig,et al.  The Capacity of Gaussian Multi-User Channels With State and Feedback , 2007, IEEE Transactions on Information Theory.

[12]  Vincent K. N. Lau,et al.  Optimal Transmission and Limited Feedback Design for OFDM/MIMO Systems in Frequency Selective Block Fading Channels , 2007, IEEE Transactions on Wireless Communications.

[13]  Young Han Kim,et al.  Feedback capacity of the first-order moving average Gaussian channel , 2004, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  John M. Cioffi,et al.  Delay-constrained capacity with causal feedback , 2002, IEEE Trans. Inf. Theory.

[15]  Anant Sahai,et al.  Anytime communication over the Gilbert-Eliot channel with noiseless feedback , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[16]  Shlomo Shamai,et al.  On the capacity of some channels with channel state information , 1999, IEEE Trans. Inf. Theory.

[17]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[18]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[19]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[20]  Nicola Elia,et al.  Convergence of Fundamental Limitations in Feedback Communication, Estimation, and Feedback Control over Gaussian Channels , 2009, Commun. Inf. Syst..

[21]  Sekhar Tatikonda,et al.  Feedback capacity of finite-state machine channels , 2005, IEEE Transactions on Information Theory.

[22]  Sekhar Tatikonda,et al.  Markov control problems under communication constraints , 2001, Commun. Inf. Syst..

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[25]  L. Goddard Information Theory , 1962, Nature.

[26]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[27]  H. Viswanathan,et al.  Capacity of Markov channels with receiver CSI and delayed feedback , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  Frank R. Kschischang,et al.  Feedback Quantization Strategies for Multiuser Diversity Systems , 2007, IEEE Transactions on Information Theory.

[29]  Petar V. Kokotovic,et al.  Near-optimal cheap control of nonlinear systems* , 1998 .

[30]  Meir Feder,et al.  On a capacity achieving scheme for the colored Gaussian channel with feedback , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[31]  J. Pieter M. Schalkwijk,et al.  A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.

[32]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[33]  Anant Sahai,et al.  The Anytime Reliability of the AWGN+erasure channel with Feedback , 2004 .

[34]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[35]  Michael L. Honig,et al.  Performance of Limited Feedback Schemes for Downlink OFDMA with Finite Coherence Time , 2007, 2007 IEEE International Symposium on Information Theory.

[36]  Yuguang Fang Stability analysis of linear control systems with uncertain parameters , 1994 .

[37]  Nicola Elia,et al.  Achieving the Stationary Feedback Capacity for Gaussian Channels , 2005 .

[38]  Thierry E. Klein,et al.  Capacity of Gaussian noise channels with side information and feedback , 2001 .

[39]  Aaron D. Wyner,et al.  On the Schalkwijk-Kailath coding scheme with a peak energy constraint , 1968, IEEE Trans. Inf. Theory.

[40]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[41]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[42]  T. Kailath,et al.  A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .

[43]  Nicola Elia Feedback stabilization in the presence of fading channels , 2003, Proceedings of the 2003 American Control Conference, 2003..

[44]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[45]  Sanjoy K. Mitter,et al.  Control with Limited Information , 2001, Eur. J. Control.

[46]  Lawrence H. Ozarow,et al.  Random coding for additive Gaussian channels with feedback , 1990, IEEE Trans. Inf. Theory.

[47]  Tsachy Weissman,et al.  Coding for the feedback Gel'fand-Pinsker channel and the feedforward Wyner-Ziv source , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[48]  Robert Stelzer ON MARKOV-SWITCHING ARMA PROCESSES—STATIONARITY, EXISTENCE OF MOMENTS, AND GEOMETRIC ERGODICITY , 2009, Econometric Theory.

[49]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[50]  S. Butman Linear feedback rate bounds for regressive channels , 1976 .

[51]  Jialing Liu,et al.  Writing on Dirty Paper with Feedback , 2006, 2006 IEEE International Conference on Networking, Sensing and Control.

[52]  S. Mitter The Capacity of Channels with Feedback Part I: The General Case , 2001 .

[53]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[54]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[55]  Nicola Elia,et al.  Writing on Dirty Paper with Feedback , 2006, IEEE International Conference on Networking, Sensing and Control.

[56]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[57]  Andrea J. Goldsmith,et al.  Capacity of Finite State Channels Based on Lyapunov Exponents of Random Matrices , 2006, IEEE Transactions on Information Theory.

[58]  Amir K. Khandani,et al.  On the Capacity of Time-Varying Channels With Periodic Feedback , 2007, IEEE Transactions on Information Theory.

[59]  Jialing Liu,et al.  Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control , 2006 .