Sequential Monte Carlo Instant Radiosity

Instant Radiosity and its derivatives are interactive methods for efficiently estimating global (indirect) illumination. They represent the last indirect bounce of illumination before the camera as the composite radiance field emitted by a set of virtual point light sources (VPLs). In complex scenes, current algorithms suffer from a difficult combination of two issues: it remains a challenge to distribute VPLs in a manner that simultaneously gives a high-quality indirect illumination solution for each frame, and to do so in a temporally coherent manner. We address both issues by building, and maintaining over time, an adaptive and temporally coherent distribution of VPLs in locations where they bring indirect light to the image. We introduce a novel heuristic sampling method that strives to only move as few of the VPLs between frames as possible. The result is, to the best of our knowledge, the first interactive global illumination algorithm that works in complex, highly-occluded scenes, suffers little from temporal flickering, supports moving cameras and light sources, and is output-sensitive in the sense that it places VPLs in locations that matter most to the final result.

[1]  Jaakko Lehtinen,et al.  Sequential Monte Carlo Instant Radiosity , 2016, IEEE Transactions on Visualization and Computer Graphics.

[2]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[3]  Philipp Slusallek,et al.  Simple and Robust Iterative Importance Sampling of Virtual Point Lights , 2010, Eurographics.

[4]  Hans-Peter Seidel,et al.  Making Imperfect Shadow Maps View‐Adaptive: High‐Quality Global Illumination in Large Dynamic Scenes , 2011, Comput. Graph. Forum.

[5]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[6]  Bernard Péroche,et al.  Metropolis Instant Radiosity , 2007, Comput. Graph. Forum.

[7]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[8]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[9]  Jaakko Lehtinen,et al.  Incremental Instant Radiosity for Real-Time Indirect Illumination , 2007, Rendering Techniques.

[10]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[11]  Vlastimil Havran,et al.  Temporally Coherent Adaptive Sampling for Imperfect Shadow Maps , 2013, Comput. Graph. Forum.

[12]  Bernard Péroche,et al.  Non-interleaved deferred shading of interleaved sample patterns , 2006, GH '06.

[13]  Martin Knecht,et al.  Differential Instant Radiosity for mixed reality , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[14]  Carsten Dachsbacher,et al.  Reflective shadow maps , 2005, I3D '05.

[15]  Frédo Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, SIGGRAPH 2004.

[16]  Rae A. Earnshaw,et al.  Shadow Mapping for Hemispherical and Omnidirectional Light Sources , 2002 .

[17]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH 2008.

[18]  Richard Szeliski,et al.  Digital photography with flash and no-flash image pairs , 2004, ACM Trans. Graph..

[19]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[20]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[21]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Comput. Graph. Forum.

[22]  Jaakko Lehtinen,et al.  Online motion synthesis using sequential Monte Carlo , 2014, ACM Trans. Graph..

[23]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[24]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[25]  Anton Kaplanyan,et al.  Reflective Shadow Map Clustering for Real-Time Global Illumination , 2012, Eurographics.

[26]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[27]  Philipp Slusallek,et al.  Interactive Global Illumination in Complex and Highly Occluded Environments , 2003, Rendering Techniques.

[28]  Timo Aila,et al.  dPVS: an occlusion culling system for massive dynamic environments , 2004, IEEE Computer Graphics and Applications.

[29]  Tero Karras,et al.  Maximizing parallelism in the construction of BVHs, octrees, and k-d trees , 2012, EGGH-HPG'12.

[30]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[31]  Bernard Péroche,et al.  Bidirectional instant radiosity , 2006, EGSR '06.

[32]  Carsten Dachsbacher,et al.  Rich‐VPLs for Improving the Versatility of Many‐Light Methods , 2015, Comput. Graph. Forum.

[33]  T. Kollig,et al.  Illumination in the Presence of Weak Singularities , 2006 .

[34]  Lei Yang,et al.  Temporal Coherence Methods in Real‐Time Rendering , 2012, Comput. Graph. Forum.

[35]  Frédo Durand,et al.  Eurographics Symposium on Rendering 2015 Probabilistic Connections for Bidirectional Path Tracing Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing , 2022 .

[36]  Timo Aila,et al.  Alias-Free Shadow Maps , 2004, Rendering Techniques.

[37]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[38]  Edgar Velázquez-Armendáriz,et al.  Tensor Clustering for Rendering Many‐Light Animations , 2008 .