Modeling the hydrological impact of land use change in a dolomite-dominated karst system

[1]  F. Pianosi,et al.  V2Karst V1.1: a parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions , 2018, Geoscientific Model Development.

[2]  Markus Disse,et al.  A multi-objective approach to improve SWAT model calibration in alpine catchments , 2018 .

[3]  C. Simmons,et al.  Spring hydrograph simulation of karstic aquifers: impacts of variable recharge area, intermediate storage and memory effects. , 2017 .

[4]  Vincent Guinot,et al.  KarstMod: A modelling platform for rainfall - discharge analysis and modelling dedicated to karst systems , 2017, Environ. Model. Softw..

[5]  Jichun Wu,et al.  Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model , 2017 .

[6]  Raghavan Srinivasan,et al.  Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool , 2017 .

[7]  Célestine Delbart,et al.  Spatial organization of the impulse response in a karst aquifer , 2016 .

[8]  Chansheng He,et al.  Modelling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China , 2015 .

[9]  T. Blume,et al.  From hillslope to stream: methods to investigate subsurface connectivity , 2015 .

[10]  H. Jourde,et al.  KARSTMOD: A Generic Modular Reservoir Model Dedicated to Spring Discharge Modeling and Hydrodynamic Analysis in Karst , 2014 .

[11]  Thorsten Wagener,et al.  Karst water resources in a changing world: Review of hydrological modeling approaches , 2014 .

[12]  J. Maréchal,et al.  Semi-distributed lumped model of a karst system under active management , 2014 .

[13]  V. Guinot,et al.  On the inclusion of ground-based gravity measurements to the calibration process of a global rainfall-discharge reservoir model: case of the Durzon karst system (Larzac, southern France) , 2013, Environmental Earth Sciences.

[14]  M. Sauter,et al.  Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach , 2012 .

[15]  M. Weiler,et al.  A new approach to model the spatial and temporal variability of recharge to karst aquifers , 2012 .

[16]  Markus Weiler,et al.  Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer , 2012, Environmental Earth Sciences.

[17]  James P. McNamara,et al.  Storage as a Metric of Catchment Comparison , 2011 .

[18]  V. Guinot,et al.  Sensitivity analysis of conceptual model calibration to initialisation bias. Application to karst spring discharge models , 2011 .

[19]  T. Geyer,et al.  The significance of turbulent flow representation in single‐continuum models , 2011 .

[20]  A. Mangin,et al.  A multi-objective calibration framework for rainfall–discharge models applied to karst systems , 2011 .

[21]  Vincent Guinot,et al.  Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model , 2011 .

[22]  T. Jonas,et al.  Estimating the snow water equivalent from snow depth measurements in the Swiss Alps , 2009 .

[23]  Damir Jukić,et al.  Groundwater balance estimation in karst by using a conceptual rainfall-runoff model , 2009 .

[24]  Damir Jukić,et al.  Estimating parameters of groundwater recharge model in frequency domain: Karst springs Jadro and Žrnovnica , 2008 .

[25]  Yonghong Hao,et al.  Simulation of spring flows from a karst aquifer with an artificial neural network , 2008 .

[26]  Michel Bakalowicz,et al.  Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France) , 2007 .

[27]  Valentina Krysanova,et al.  Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment , 2005 .

[28]  B. Scanlon,et al.  Choosing appropriate techniques for quantifying groundwater recharge , 2002 .

[29]  D. Labat,et al.  Rainfall runoff relations for karstic springs. Part I: convolution and spectral analyses , 2000 .

[30]  A. Baltensweiler,et al.  Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins , 1999 .

[31]  Rachid Ababou,et al.  Linear and nonlinear input/output models for karstic springflow and flood prediction at different time scales , 1999 .

[32]  Alparslan Arikan,et al.  MODALP: a deterministic rainfall-runoff model for large karstic areas , 1988 .

[33]  P. Williams The role of the subcutaneous zone in karst hydrology , 1983 .

[34]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[35]  L. Zini,et al.  Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer , 2018 .

[36]  Zhao Chen,et al.  A new approach to evaluate spatiotemporal dynamics of controlling parameters in distributed environmental models , 2017, Environ. Model. Softw..

[37]  P. Fleury Sources sous-marines et aquifères karstiques côtiers méditerranéens : Fonctionnement et caractérisation , 2005 .

[38]  C. W. Thornthwaite An approach toward a rational classification of climate. , 1948 .