Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator

By designing a cascaded laser wakefield accelerator, high-quality monoenergetic electron beams (e beams) with peak energies of 340–360 MeV and rms divergence of <0.3 mrad were produced. Based on this accelerator, the e-beam betatron radiation spectra were measured exactly via the single-photon counting technique to diagnose the e-beam transverse emittance in a single shot. The e-beam transverse size in the wakefield was estimated to be ∼0.35 μm by comparing the measured X-ray spectra with the analytical model of synchrotron-like radiation. By combining the measured e-beam energy and divergence, the normalized transverse emittance was estimated to be as low as 56 μm mrad and consistent with particle-in-cell simulations. These high-energy ultralow-emittance e beams hold great potential applications in developing free electron lasers and high-energy X-ray and gamma ray sources.

[1]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[2]  Submicron emittance and ultra small beam size measurements at ATF , 2002 .

[3]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  K. Flottmann,et al.  Some basic features of the beam emittance , 2003 .

[5]  C. Geddes,et al.  Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. , 2003, Physical review letters.

[6]  J. Cary,et al.  VORPAL: a versatile plasma simulation code , 2004 .

[7]  A. Pukhov,et al.  X-ray generation in strongly nonlinear plasma waves. , 2004, Physical review letters.

[8]  Alexander Pukhov,et al.  The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability , 2004, physics/0409089.

[9]  Teruyoshi Takahashi,et al.  Calibration of imaging plate for high energy electron spectrometer , 2005 .

[10]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[11]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[12]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[13]  C Joshi,et al.  Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime. , 2009, Physical review letters.

[14]  D. Descamps,et al.  Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources. , 2009, The Review of scientific instruments.

[15]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[16]  S. M. Wiggins,et al.  Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. , 2010, Physical review letters.

[17]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[18]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[19]  Ferenc Krausz,et al.  Emittance and divergence of laser wakefield accelerated electrons , 2010 .

[20]  A. Thomas Algorithm for calculating spectral intensity due to charged particles in arbitrary motion , 2009, 0906.0758.

[21]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[22]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[23]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[24]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[25]  S. Fourmaux,et al.  Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation , 2011, 1104.2243.

[26]  Z. Najmudin,et al.  Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation , 2011, 1105.5559.

[27]  Ferenc Krausz,et al.  Ultralow emittance electron beams from a laser-wakefield accelerator , 2012 .

[28]  Zhirong Huang,et al.  Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. , 2012, Physical review letters.

[29]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[30]  Eric Esarey,et al.  Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot x-ray spectroscopy. , 2012 .

[31]  R. X. Li,et al.  Control of electron-seeding phase in a cascaded laser wakefield accelerator , 2012 .

[32]  V Malka,et al.  Optical transverse injection in laser-plasma acceleration. , 2013, Physical review letters.

[33]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[34]  Zhi‐zhan Xu,et al.  Control of seeding phase for a cascaded laser wakefield accelerator with gradient injection , 2013 .

[35]  Z. M. Sheng,et al.  Bright betatron X-ray radiation from a laser-driven-clustering gas target , 2013, Scientific Reports.

[36]  Stepan Bulanov,et al.  Modeling classical and quantum radiation from laser-plasma accelerators , 2013 .

[37]  V Malka,et al.  Observation of longitudinal and transverse self-injections in laser-plasma accelerators , 2013, Nature Communications.

[38]  Stepan Bulanov,et al.  Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator , 2014 .

[39]  James Dunn,et al.  Diagnosis of bubble evolution in laser-wakefield acceleration via angular distributions of betatron x-rays , 2014 .

[40]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[41]  C. Spielmann,et al.  Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator , 2015, Journal of Plasma Physics.

[42]  M. Mirzaie,et al.  Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator , 2016, Scientific Reports.

[43]  Rong Qi,et al.  Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering , 2016, Scientific Reports.

[44]  R. X. Li,et al.  High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control. , 2016, Physical review letters.

[45]  Zhi‐zhan Xu,et al.  Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching , 2016 .