Structure and stability of (NG)nCN3Be3(+) clusters and comparison with (NG)BeY(0/+).

The noble gas binding ability of CN3Be3(+) clusters was assessed both by ab intio and density functional studies. The global minimum structure of the CN3Be3(+) cluster binds with four noble-gas (NG) atoms, in which the Be atoms are acting as active centers. The electron transfer from the noble gas to the Be atom plays a key role in binding. The dissociation energy of the Be-NG bond gradually increases from He to Rn, maintaining the periodic trend. The HOMO-LUMO gap, an indicator for stability, gives additional insight into these NG-bound clusters. The temperature at which the NG-binding process is thermodynamically feasible was identified. In addition, we investigated the stability of two new neutral NG compounds, (NG)BeSe and (NG)BeTe, and found them to be suitable candidates to be detected experimentally such as (NG)BeO and (NG)BeS. The dissociation energies of the Be-NG bond in monocationic analogues of (NG)BeY (Y=O, S, Se, Te) were found to be larger than in the corresponding neutral counter-parts. Finally, the higher the positive charge on the Be atoms, the higher the dissociation energy for the Be-NG bond becomes.

[1]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[2]  L. Stein Removal of Xenon and Radon from Contaminated Atmospheres with Dioxygenyl Hexafluoroantimonate, O2SbF6 , 1973, Nature.

[3]  M. Hochlaf,et al.  Solvation effects and stabilization of multicharged ions: a case study of Ar(m)BeO(q+) complexes. , 2012, Physical chemistry chemical physics : PCCP.

[4]  M. Pettersson,et al.  New Rare-Gas-Containing Neutral Molecules , 1999 .

[5]  M. Heaven,et al.  Spectroscopic characterization of the C2-Ne van der Waals complex. , 2006, The Journal of chemical physics.

[6]  S. Borocci,et al.  Noble gas anions: a theoretical investigation of FNgBN- (Ng = He-Xe). , 2007, The journal of physical chemistry. A.

[7]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[8]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[9]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[10]  M. Pettersson,et al.  Photochemistry of HNCO in Solid Xenon: Photoinduced and Thermally Activated Formation of HXeNCO † , 2000 .

[11]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[12]  Gas-Phase Ion Chemistry of the Noble Gases: Recent Advances and Future Perspectives , 2011, European journal of mass spectrometry.

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  E. G. Hope,et al.  Recent Advances in Noble-Gas Chemistry , 1998 .

[15]  W. Jäger,et al.  Investigation of the Ne-NH3 van der Waals complex: Rotational spectrum and ab initio calculations , 2001 .

[16]  Lester Andrews,et al.  Noble Gas Complexes with BeO: Infrared Spectra of NG-BeO (NG = Ar, Kr, Xe) , 1994 .

[17]  S. Borocci,et al.  Noble‐Gas Complexes: Theoretical Investigation of Multicenter Polynuclear Species , 2007 .

[18]  K. O. Christe Die Renaissance der Edelgaschemie , 2001 .

[19]  P. Pyykkö Ab initio study of bonding trends among the sulphur-containing 16-valence-electron ABC species: SBO−, SBS−, SNO+ and SXNen , 1989 .

[20]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[21]  B. A. Hess,et al.  TDMP2 Calculation of Dynamic Multipole Polarizabilities and Dispersion Coefficients of the Noble Gases Ar, Kr, Xe, and Rn , 1996 .

[22]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[23]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[24]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[25]  A. S. Dickinson,et al.  Accuracy of recent potential energy surfaces for the He-N2 interaction. I. Virial and bulk transport coefficients. , 2007, The Journal of chemical physics.

[26]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[27]  L. Pauling The Formulas of Antimonic Acid and the Antimonates , 1933 .

[28]  J. Pilmé,et al.  H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3). , 2009, The Journal of chemical physics.

[29]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. Benzenoid hydrocarbons , 1971 .

[30]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[31]  K.-N. Huang,et al.  Electric-dipole, quadrupole, and magnetic-dipole susceptibilities and shielding factors for closed-shell ions of the He, Ne, Ar, Ni (Cu+), Kr, Pb, and Xe isoelectronic sequences , 1983 .

[32]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[33]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[34]  F. Pauzat,et al.  H(3) (+) as a trap for noble gases--2: structure and energetics of XH(3) (+) complexes from X=neon to xenon. , 2007, The Journal of chemical physics.

[35]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[36]  D. Cremer,et al.  The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions , 1990 .

[37]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[38]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[39]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[40]  F. Pauzat,et al.  H3+ as a trap for noble gases: 1—The case of Argon , 2005 .

[41]  Toshiharu Mori,et al.  Isotope effect and nature of bonding in the cluster ions H+3(Ar)n and D+3(Ar)n , 1989 .

[42]  Hugo A. Jiménez-Vázquez,et al.  Binding Energy in and Equilibrium Constant of Formation for the Dodecahedrane Compounds He@C20H20 and Ne@C20H20 , 2001 .

[43]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[44]  Trapping of noble gases (He–Kr) by the aromatic H3+ and Li3+ species: a conceptual DFT approach , 2009, 0911.5381.

[45]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[46]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[47]  Yan-Bo Wu,et al.  D3h CN3Be3+ and CO3Li3+: viable planar hexacoordinate carbon prototypes. , 2012, Physical chemistry chemical physics : PCCP.

[48]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[49]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[50]  Pratim K Chattaraj,et al.  C5Li7(+) and O2Li5(+) as noble-gas-trapping agents. , 2013, Chemistry.

[51]  R. Haddon,et al.  Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2]annulenes , 1980 .

[52]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[53]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[54]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .

[55]  R. Parr,et al.  Absolute hardness as a measure of aromaticity , 1988 .

[56]  F. Bickelhaupt,et al.  Radon hydrides: structure and bonding. , 2011, Physical chemistry chemical physics : PCCP.

[57]  Qiang Wang,et al.  Infrared spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS2 in noble-gas matrices. , 2013, The journal of physical chemistry. A.

[58]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[59]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[60]  D. Cremer,et al.  Helium chemistry: theoretical predictions and experimental challenge , 1987 .

[61]  Lorenza Operti,et al.  F3Ge-Xe+: a Xenon-Germanium Molecular Species , 2010 .