Min-rank conjecture for log-depth circuits

A completion of an m-by-n matrix A with entries in {0,1,@?} is obtained by setting all @?-entries to constants 0 and 1. A system of semi-linear equations over GF"2 has the form Mx=f(x), where M is a completion of A and f:{0,1}^n->{0,1}^m is an operator, the ith coordinate of which can only depend on variables corresponding to @?-entries in the ith row of A. We conjecture that no such system can have more than 2^n^-^@e^@?^m^r^(^A^) solutions, where @e>0 is an absolute constant and mr(A) is the smallest rank over GF"2 of a completion of A. The conjecture is related to an old problem of proving super-linear lower bounds on the size of log-depth boolean circuits computing linear operators [email protected]?Mx. The conjecture is also a generalization of a classical question about how much larger can non-linear codes be than linear ones. We prove some special cases of the conjecture and establish some structural properties of solution sets.

[1]  Jacques Morgenstern,et al.  Note on a Lower Bound on the Linear Complexity of the Fast Fourier Transform , 1973, JACM.

[2]  MorgensternJacques Note on a Lower Bound on the Linear Complexity of the Fast Fourier Transform , 1973 .

[3]  Pavel Pudlák,et al.  On shifting networks , 1993, Theor. Comput. Sci..

[4]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[5]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[6]  Vojtech Rödl,et al.  Boolean Circuits, Tensor Ranks, and Communication Complexity , 1997, SIAM J. Comput..

[7]  L. Valiant Why is Boolean complexity theory difficult , 1992 .

[8]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[9]  Ran Raz,et al.  Lower bounds for matrix product, in bounded depth circuits with arbitrary gates , 2001, STOC '01.

[10]  Noga Alon,et al.  Superconcentrators of Depths 2 and 3; Odd Levels Help (Rarely) , 1994, J. Comput. Syst. Sci..

[11]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[12]  Joel Friedman,et al.  A note on matrix rigidity , 1993, Comb..

[13]  Pavel Pudlák,et al.  Communication in bounded depth circuits , 1994, Comb..

[14]  Nicholas Pippenger,et al.  Superconcentrators of Depth 2 , 1982, J. Comput. Syst. Sci..

[15]  Leiba Rodman,et al.  Ranks of Completions of Partial Matrices , 1989 .

[16]  Jacques Morgenstern,et al.  The Linear Complexity of Computation , 1975, JACM.

[17]  Stasys Jukna Entropy of Operators or why Matrix Multiplication is Hard for Depth-Two Circuits , 2008, Theory of Computing Systems.

[18]  Pavel Pudlák,et al.  Circuit lower bounds and linear codes , 2006, Electron. Colloquium Comput. Complex..

[19]  Satyanarayana V. Lokam Spectral Methods for Matrix Rigidity with Applications to Size-Depth Trade-offs and Communication Complexity , 2001, J. Comput. Syst. Sci..

[20]  Noga Alon,et al.  Linear Circuits over GF(2) , 1990, SIAM J. Comput..

[21]  Daniel A. Spielman,et al.  A Remark on Matrix Rigidity , 1997, Inf. Process. Lett..

[22]  Satyanarayana V. Lokam On the rigidity of Vandermonde matrices , 2000, Theor. Comput. Sci..

[23]  Ronald de Wolf Lower Bounds on Matrix Rigidity Via a Quantum Argument , 2006, ICALP.

[24]  A. Razborov,et al.  Improved lower bounds on the rigidity of Hadamard matrices , 1998 .

[25]  Ran Raz,et al.  Lower Bounds for Matrix Product in Bounded Depth Circuits with Arbitrary Gates , 2003, SIAM J. Comput..