A process for synthesizing the Li–Mg–N–H hydrogen storage system from Mg and LiNH2

[1]  S. Hino,et al.  Synthesis and decomposition reactions of metal amides in metal–N–H hydrogen storage system , 2006 .

[2]  H. Fujii,et al.  Hydrogen absorption properties of Li-Mg-N-H system , 2005 .

[3]  S. Hino,et al.  Mechanism of hydrogenation reaction in the Li-Mg-N-H system. , 2005, The journal of physical chemistry. B.

[4]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[5]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[6]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[7]  H. Fujii,et al.  Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System , 2004 .

[8]  S. Orimo,et al.  Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2 , 2004 .

[9]  H. Fujii,et al.  Lithium nitride for reversible hydrogen storage , 2004 .

[10]  Andreas Züttel,et al.  Hydrogen interaction with carbon nanostructures - current situation and future prospects , 2003 .

[11]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[12]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[13]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[14]  K. Miwa,et al.  Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2 , 2005 .