Selection of a model of cerebral activity for fMRI Group Data analysis

This thesis is dedicated to the statistical analysis of multi-sub ject fMRI data, with the purpose of identifying bain structures involved in certain cognitive or sensori-motor tasks, in a reproducible way across sub jects. To overcome certain limitations of standard voxel-based testing methods, as implemented in the Statistical Parametric Mapping (SPM) software, we introduce a Bayesian model selection approach to this problem, meaning that the most probable model of cerebral activity given the data is selected from a pre-defined collection of possible models. Based on a parcellation of the brain volume into functionally homogeneous regions, each model corresponds to a partition of the regions into those involved in the task under study and those inactive. This allows to incorporate prior information, and avoids the dependence of the SPM-like approach on an arbitrary threshold, called the clusterforming threshold, to define active regions. By controlling a Bayesian risk, our approach balances false positive and false negative risk control. Urthermore, it is based on a generative model that accounts for the spatial uncertainty on the localization of individual effects, due to spatial normalization errors. On both simulated and real fMRI datasets, we show that this new paradigm corrects several biases of the SPM-like approach, which either swells or misses the different active regions, depending on the choice of a cluster-forming threshold.

[1]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  C. McGillem,et al.  Image Registration Error Variance as a Measure of Overlay Quality , 1976, IEEE Transactions on Geoscience Electronics.

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[8]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[9]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[10]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[11]  Yogendra P. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[12]  Ulf Grenander,et al.  General Pattern Theory: A Mathematical Study of Regular Structures , 1993 .

[13]  Mirko Krivánek,et al.  Simulated Annealing: A Proof of Convergence , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  M. Raichle La visualisation de la pensée , 1994 .

[15]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[16]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[17]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[18]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[19]  G. Subsol,et al.  Construction automatique d'atlas anatomiques morphométriques à partir d'images médicales tridimensionnelles : application à un atlas du crâne , 1995 .

[20]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[21]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[22]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[23]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[24]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[25]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[27]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[29]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[30]  Ranjini Natarajan,et al.  Gibbs Sampling with Diffuse Proper Priors: A Valid Approach to Data-Driven Inference? , 1998 .

[31]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[32]  Helmut Strasser,et al.  On the Asymptotic Theory of Permutation Statistics , 1999 .

[33]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[34]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[35]  Pierre Legendre,et al.  An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model , 1999 .

[36]  S. Dehaene,et al.  Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing , 1999, Journal of Cognitive Neuroscience.

[37]  Niels V. Hartvig,et al.  PARAMETRIC MODELLING OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA , 2000 .

[38]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  O. Witte,et al.  Functional Mapping of the Human Brain , 2000 .

[40]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[41]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[42]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[43]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[44]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[45]  J. Poline,et al.  Group Analysis of Individual Activation Maps Using 3D Scale-Space Primal Sketches and a Markovian Random Field , 2001 .

[46]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[47]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[48]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[49]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[50]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[51]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[52]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[53]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[54]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[55]  Karl J. Friston,et al.  Mixtures of general linear models for functional neuroimaging , 2003, IEEE Transactions on Medical Imaging.

[56]  S. Dudoit,et al.  Resampling-based multiple testing for microarray data analysis , 2003 .

[57]  Yongchao Ge Resampling-based Multiple Testing for Microarray Data Analysis , 2003 .

[58]  Satrajit S. Ghosh,et al.  Region of interest based analysis of functional imaging data , 2003, NeuroImage.

[59]  D. Louis Collins,et al.  Retrospective evaluation of intersubject brain registration , 2003, IEEE Transactions on Medical Imaging.

[60]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[61]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[62]  Thomas E. Nichols,et al.  Validating cluster size inference: random field and permutation methods , 2003, NeuroImage.

[63]  Karl J. Friston,et al.  Variational Bayesian inference for fMRI time series , 2003, NeuroImage.

[64]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[65]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[66]  E. Kuhn,et al.  Coupling a stochastic approximation version of EM with an MCMC procedure , 2004 .

[67]  Jean-Baptiste Poline,et al.  Incremental activation detection in fMRI series using Kalman filtering , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[68]  Guillaume Flandin,et al.  Utilisation d'informations géométriques pour l'analyse statistique des données d'IRM fonctionnelle. (ntroduction of geometrical features for the statistical analysis of functional MRI data) , 2004 .

[69]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[70]  Thomas E. Nichols,et al.  Combining voxel intensity and cluster extent with permutation test framework , 2004, NeuroImage.

[71]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[72]  I. Verdinelli,et al.  False Discovery Control for Random Fields , 2004 .

[73]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[74]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[75]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[76]  Keith J. Worsley,et al.  An improved theoretical P value for SPMs based on discrete local maxima , 2005, NeuroImage.

[77]  Linear Models: Permutation Methods , 2005 .

[78]  Hae Yong Kim,et al.  Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI , 2005, Comput. Vis. Image Underst..

[79]  Frédéric Gosselin,et al.  Maxima of discretely sampled random fields, with an application to 'bubbles' , 2005 .

[80]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[81]  Jean-Baptiste Poline,et al.  Reading the brain visual system as an inverse problem , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[82]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[83]  Jean-Baptiste Poline,et al.  Are fMRI event-related response constant in time? A model selection answer , 2006, NeuroImage.

[84]  B. Thirion,et al.  Combined permutation test and mixed‐effect model for group average analysis in fMRI , 2006, Human brain mapping.

[85]  Silke Dodel,et al.  Detection of signal synchronizations in resting-state fMRI datasets , 2006, NeuroImage.

[86]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[87]  Mark W. Woolrich,et al.  Variational bayes inference of spatial mixture models for segmentation , 2006, IEEE Transactions on Medical Imaging.

[88]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[89]  Sophie Donnet Inversion de données IRMf : estimation et sélection de modèles , 2006 .

[90]  Jean-Baptiste Poline,et al.  Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses , 2007, NeuroImage.

[91]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[92]  K. Worsley,et al.  Detecting Sparse Signals in Random Fields, With an Application to Brain Mapping , 2007 .

[93]  Gersende Fort,et al.  Combining Monte Carlo and Mean-Field-Like Methods for Inference in Hidden Markov Random Fields , 2007, IEEE Transactions on Image Processing.

[94]  L. Fahrmeir,et al.  Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging , 2007 .

[95]  Jean-Francois Mangin,et al.  High Level Group Analysis of FMRI Data Based on Dirichlet Process Mixture Models , 2007, IPMI.

[96]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[97]  B. Thirion,et al.  Fast reproducible identification and large-scale databasing of individual functional cognitive networks , 2007, BMC Neuroscience.

[98]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[99]  B. Schölkopf,et al.  Hierarchical Dirichlet Processes with Random Effects , 2007 .

[100]  Bertrand Thirion,et al.  Mixed-effect statistics for group analysis in fMRI: A nonparametric maximum likelihood approach , 2007, NeuroImage.

[101]  Guillaume Flandin,et al.  Bayesian comparison of spatially regularised general linear models , 2007, Human brain mapping.

[102]  Karl J. Friston,et al.  Diffusion-based spatial priors for functional magnetic resonance images , 2008, NeuroImage.

[103]  B. Thirion,et al.  DEALING WITH SPATIAL NORMALIZATION ERRORS IN fMRI GROUP INFERENCE USING HIERARCHICAL MODELING , 2008 .

[104]  Jean-Francois Mangin,et al.  Triangulating cortical functional networks with anatomical landmarks , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[105]  Bertrand Thirion,et al.  A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI , 2008, NeuroImage.

[106]  Paul M. Thompson,et al.  Multi-atlas tensor-based morphometry and its application to a genetic study of 92 twins , 2008 .

[107]  Grégory Operto,et al.  Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels , 2008, NeuroImage.

[108]  Jean-Francois Mangin,et al.  Identifying cortical sulci from localization, shape and local organization , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[109]  Habib Benali,et al.  NEDICA: Detection of group functional networks in FMRI using spatial independent component analysis , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[110]  Alexis Roche,et al.  Increased sensitivity in FMRI group analysis using mixed-effect modeling , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[111]  Jean-Francois Mangin,et al.  Probabilistic Anatomo-Functional Parcellation of the Cortex: How Many Regions? , 2008, MICCAI.

[112]  Mert R. Sabuncu,et al.  Discovering Modes of an Image Population through Mixture Modeling , 2008, MICCAI.

[113]  Alain Trouvé,et al.  MAP Estimation of Statistical Deformable Template Via Nonlinear Mixed Effect Models : Deterministic and Stochastic Approaches , 2008 .

[114]  Mark W. Woolrich,et al.  Robust group analysis using outlier inference , 2008, NeuroImage.

[115]  Brian Caffo,et al.  A Bayesian hierarchical framework for spatial modeling of fMRI data , 2008, NeuroImage.

[116]  Grégory Operto,et al.  Surface-Based Structural Group Analysis of fMRI Data , 2008, MICCAI.

[117]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[118]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[119]  Thomas E. Nichols,et al.  Modeling Inter‐Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model , 2009, Biometrics.

[120]  Alexis Roche,et al.  Anatomically Informed Bayesian Model Selection for fMRI Group Data Analysis , 2009, MICCAI.

[121]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.