Design, Search and Implementation of High-dimension, Efficient, Long-cycle and Portable Uniform Random Variate Generator

Author(s): Deng, Lih-Yuan; Xu, Hong Q | Abstract: We propose a system of multiple recursive generators of modulus p and order k where all nonzero coefficients of the recurrence are equal. The advantage of this property is that a single multipli- cation is needed to compute the recurrence, so the generator would run faster than the general case. For p = 231 − 1, the most popular modulus used, we provide tables of specific parameter values yielding maximum period for recurrence of order k = 102 and 120. For p = 231 55719 and k = 1511, we have found generators with a period length approximately 1014100.5 .

[1]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[2]  Lih-Yuan Deng,et al.  STATISTICAL JUSTIFICATION OF COMBINATION GENERATORS , 1997 .

[3]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[4]  Pierre L'Ecuyer,et al.  Linear congruential generators of order K>1 , 1988, WSC '88.

[5]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[6]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[7]  Lih-Yuan Deng,et al.  Generation of Uniform Variates from Several Nearly Uniformly Distributed Variables , 1990 .

[8]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[9]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[10]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[11]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[12]  N. Zierler Linear Recurring Sequences , 1959 .

[13]  A. Grube,et al.  Mehrfach rekursiv‐erzeugte Pseudo‐Zufallszahlen , 1973 .

[14]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[15]  Pierre L'Ecuyer,et al.  Beware of linear congruential generators with multipliers of the form a = ±2q ±2r , 1999, TOMS.