Optimal Range Max Datacube for Fixed Dimensions

We present a new data structure to support orthogonal range max queries on a datacube. For a d-dimensional datacube with size n in each dimension where d ? c3 log log n/ log(log* n), our structure requires O(c1d) query time and O((c2n)d) storage where c1, c2 and c3 are constants independent of d and n; and log* n is the minimum number of repeated logarithms it takes to reduce the value n to at most 2. Hence our data structure is asymptotically optimal when d is fixed, i.e., a constant independent of n.

[1]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[2]  Laura M. Haas,et al.  Transforming Heterogeneous Data with Database Middleware: Beyond Integration , 1999, IEEE Data Eng. Bull..

[3]  Terence R. Smith,et al.  Relative prefix sums: an efficient approach for querying dynamic OLAP data cubes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[4]  Sin Yeung Lee,et al.  Hierarchical Compact Cube for Range-Max Queries , 2000, VLDB.

[5]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: part II. The arithmetic model , 1990, JACM.

[6]  Divyakant Agrawal,et al.  Space-Efficient Data Cubes for Dynamic Environments , 2000, DaWaK.

[7]  Yannis E. Ioannidis,et al.  Hierarchical Prefix Cubes for Range-Sum Queries , 1999, VLDB.

[8]  Ju-Hong Lee,et al.  Dynamic Update Cube for Range-sum Queries , 2001, VLDB.

[9]  Andrew Chi-Chih Yao,et al.  Space-time tradeoff for answering range queries (Extended Abstract) , 1982, STOC '82.

[10]  Stephen Alstrup,et al.  New data structures for orthogonal range searching , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[11]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[12]  Nimrod Megiddo,et al.  Range queries in OLAP data cubes , 1997, SIGMOD '97.

[13]  Divyakant Agrawal,et al.  The Dynamic Data Cube , 2000, EDBT.

[14]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: I. The reporting case , 1990, JACM.

[15]  Michael L. Fredman,et al.  A Lower Bound on the Complexity of Orthogonal Range Queries , 1981, JACM.

[16]  Chung Keung Poon Orthogonal Range Queries in OLAP , 2001, ICDT.

[17]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[18]  Sharad Mehrotra,et al.  Progressive approximate aggregate queries with a multi-resolution tree structure , 2001, SIGMOD '01.

[19]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[20]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[21]  Bernard Chazelle,et al.  Computing partial sums in multidimensional arrays , 1989, SCG '89.

[22]  Sunita Sarawagi,et al.  Modeling multidimensional databases , 1997, Proceedings 13th International Conference on Data Engineering.

[23]  Myoung-Ho Kim,et al.  An Efficient Processing of Range-MIN/MAX Queries over Data Cube , 1998, Inf. Sci..

[24]  Divyakant Agrawal,et al.  Flexible Data Cubes for Online Aggregation , 2001, ICDT.

[25]  Divyakant Agrawal,et al.  pCube: Update-efficient online aggregation with progressive feedback and error bounds , 2000, Proceedings. 12th International Conference on Scientific and Statistica Database Management.

[26]  George Colliat,et al.  OLAP, relational, and multidimensional database systems , 1996, SGMD.