Synthetic protocell biology: from reproduction to computation

Cells are the building blocks of biological complexity. They are complex systems sustained by the coordinated cooperative dynamics of several biochemical networks. Their replication, adaptation and computational features emerge as a consequence of appropriate molecular feedbacks that somehow define what life is. As the last decades have brought the transition from the description-driven biology to the synthesis-driven biology, one great challenge shared by both the fields of bioengineering and the origin of life is to find the appropriate conditions under which living cellular structures can effectively emerge and persist. Here, we review current knowledge (both theoretical and experimental) on possible scenarios of artificial cell design and their future challenges.

[1]  E V Koonin,et al.  How many genes can make a cell: the minimal-gene-set concept. , 2000, Annual review of genomics and human genetics.

[2]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[3]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[4]  Ron Weiss,et al.  Evolutionary Design of Genetic Circuits and Cell-Cell Communications , 2003, Adv. Complex Syst..

[5]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Deamer,et al.  The first cell membranes. , 2002, Astrobiology.

[7]  Günter von Kiedrowski,et al.  Minimal Replicator Theory I: Parabolic Versus Exponential Growth , 1993 .

[8]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[9]  P. Schuster,et al.  A minimal and self-consistent in silico cell model based on macromolecular interactions , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Martin Nilsson,et al.  Bridging Nonliving and Living Matter , 2003, Artificial Life.

[11]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[12]  F Békés Simulation of kinetics of proliferating chemical systems. , 1975, Bio Systems.

[13]  Leslie M Loew,et al.  Computational cell biology: spatiotemporal simulation of cellular events. , 2002, Annual review of biophysics and biomolecular structure.

[14]  P. Bassereau,et al.  A minimal system allowing tubulation with molecular motors pulling on giant liposomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. Helfrich,et al.  Instability and deformation of a spherical vesicle by pressure. , 1987, Physical review letters.

[16]  Pier Luigi Luisi,et al.  A Chemical Model of Homeostasis. , 2001, Angewandte Chemie.

[17]  Pier Luigi Luisi,et al.  Matrix Effect of Vesicle Formation As Investigated by Cryotransmission Electron Microscopy , 2001 .

[18]  G. F. Joyce,et al.  Minimal self-replicating systems. , 2004, Current opinion in chemical biology.

[19]  R. Weiss,et al.  Advances in synthetic biology: on the path from prototypes to applications. , 2005, Current opinion in biotechnology.

[20]  P. Luisi,et al.  Autopoietic Self-Reproduction of Fatty Acid Vesicles , 1994 .

[21]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[22]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[23]  Pier Luigi Luisi,et al.  PHOTOINDUCED FORMATION OF BILAYER VESICLES , 1998 .

[24]  Pier Luigi Luisi,et al.  OPARIN'S REACTIONS REVISITED : ENZYMATIC SYNTHESIS OF POLY(ADENYLIC ACID) IN MICELLES AND SELF-REPRODUCING VESICLES , 1994 .

[25]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[26]  R Dulbecco,et al.  Frontiers of Life , 2001 .

[27]  P. Luisi,et al.  Lipid vesicles as possible intermediates in the origin of life , 1999 .

[28]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[29]  Vincent Noireaux,et al.  Toward an artificial cell based on gene expression in vesicles , 2005, Physical biology.

[30]  Albert S Kim,et al.  Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. , 2004, Advances in colloid and interface science.

[31]  Eörs Szathmáry,et al.  Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. , 2006, Journal of theoretical biology.

[32]  R. Macdonald,et al.  Directly Observed Membrane Fusion Between Oppositely Charged Phospholipid Bilayers , 1999, The Journal of Membrane Biology.

[33]  Ezequiel Di Paolo,et al.  The Chemoton: A Model for the Origin of Long RNA Templates , 2004 .

[34]  M L Shuler,et al.  Towards the development of a minimal cell model by generalization of a model of Escherichia coli: use of dimensionless rate parameters. , 2001, Biotechnology and bioengineering.

[35]  Michael A. Savageau,et al.  Design principles for elementary gene circuits: Elements, methods, and examples. , 2001, Chaos.

[36]  Models of Protocellular Structure, Function and Evolution , 2001 .

[37]  D. Deamer,et al.  A giant step towards artificial life? , 2005, Trends in biotechnology.

[38]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  David P. Bartel,et al.  Constructing an RNA world. , 1999, Trends in Cell Biology.

[40]  A. Pohorille,et al.  Molecular modeling of protocellular functions. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[41]  F. Dyson Origins of Life , 1985 .

[42]  Ehud Shapiro,et al.  Tapping the computing power of biological molecules gives rise to tiny machines that can speak directly to living cells. , 2006, Scientific American.

[43]  D. Endy Foundations for engineering biology , 2005, Nature.

[44]  Tetsuya Yomo,et al.  Expression of a cascading genetic network within liposomes , 2004, FEBS letters.

[45]  Kenichi Yoshikawa,et al.  Gene Expression within Cell‐Sized Lipid Vesicles , 2003, Chembiochem : a European journal of chemical biology.

[46]  Mikael Cronhjort,et al.  Cluster compartmentalization may provide resistance to parasites for catalytic networks , 1997 .

[47]  Kenichi Yoshikawa,et al.  Giant Liposome as a Biochemical Reactor: Transcription of DNA and Transportation by Laser Tweezers , 2001 .

[48]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[49]  Camille Stephan-Otto Attolini,et al.  Generic Darwinian selection in catalytic protocell assemblies , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[51]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[52]  A I Oparin,et al.  Evolution of self-assembly of probionts. , 1980, Bio Systems.

[53]  Pasquale Stano,et al.  Approaches to semi-synthetic minimal cells: a review , 2005, Naturwissenschaften.

[54]  Frank Jülicher,et al.  The Morphology of Vesicles of Higher Topological Genus: Conformal Degeneracy and Conformal Modes , 1996 .

[55]  Taro Toyota,et al.  A novel system of self-reproducing giant vesicles. , 2003, Journal of the American Chemical Society.

[56]  T. Gánti Organization of chemical reactions into dividing and metabolizing units: the chemotons. , 1975, Bio Systems.

[57]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[58]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[59]  B. Pitard,et al.  ATP Synthesis by the F0F1-ATPase from the Thermophilic Bacillus PS3 Co-reconstituted with Bacteriorhodopsin into Liposomes , 1995, The Journal of Biological Chemistry.

[60]  Ron Weiss,et al.  Genetic circuit building blocks for cellular computation, communications, and signal processing , 2003, Natural Computing.

[61]  Ricard V Solé,et al.  Minimal model of self-replicating nanocells: a physically embodied information-free scenario , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  Steen Rasmussen,et al.  Simulation and dynamics of entropy-driven, molecular self-assembly processes , 1997 .

[63]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[64]  Alexander P. Lyubartsev,et al.  Multiscale modeling of lipids and lipid bilayers , 2005, European Biophysics Journal.

[65]  Elias Zintzaras,et al.  "Living" under the challenge of information decay: the stochastic corrector model vs. hypercycles. , 2002, Journal of theoretical biology.

[66]  Javier Macía,et al.  Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  P. Luisi,et al.  Protein expression in liposomes. , 1999, Biochemical and biophysical research communications.

[68]  T. Sugawara,et al.  Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[69]  Eugene V. Koonin,et al.  Comparative genomics, minimal gene-sets and the last universal common ancestor , 2003, Nature Reviews Microbiology.

[70]  Martin M Hanczyc,et al.  Replicating vesicles as models of primitive cell growth and division. , 2004, Current opinion in chemical biology.

[71]  Kunihiko Kaneko,et al.  On Recursive Production and Evolvability of Cells: Catalytic Reaction Network Approach , 2005, q-bio/0504016.

[72]  Andrew Pohorille,et al.  The origin and early evolution of membrane channels. , 2005, Astrobiology.

[73]  J. Collins,et al.  Programmable cells: interfacing natural and engineered gene networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Irene A. Chen,et al.  The Emergence of Competition Between Model Protocells , 2004, Science.

[76]  Martin M. Hanczyc,et al.  Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division , 2003, Science.

[77]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[78]  Piero Baglioni,et al.  Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa , 2005, Physical biology.

[79]  Javier Macía,et al.  Protocell self-reproduction in a spatially extended metabolism-vesicle system. , 2005, Journal of theoretical biology.

[80]  Moshe Sipper,et al.  A Self-Replicating Universal Turing Machine: From von Neumann's Dream to New Embryonic Circuits , 2000 .

[81]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[82]  E. Szathmáry,et al.  In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity , 2002, Nature.

[83]  Andrés Moya,et al.  Structural analyses of a hypothetical minimal metabolism , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  D. Deamer,et al.  Membrane self‐assembly processes: Steps toward the first cellular life , 2002, The Anatomical record.

[85]  Roberto Serra,et al.  Synchronization Phenomena in Surface-Reaction Models of Protocells , 2007, Artificial Life.

[86]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[87]  T. Traut,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes , 1998 .

[88]  S. Svetina,et al.  Membrane bending energy and shape determination of phospholipid vesicles and red blood cells , 1989, European Biophysics Journal.

[89]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[90]  A. Pohorille,et al.  Artificial cells: prospects for biotechnology. , 2002, Trends in biotechnology.

[91]  F. Mavelli,et al.  Stochastic simulations of minimal self-reproducing cellular systems , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  David W. Deamer,et al.  Nutrient Uptake by Protocells: A Liposome Model System , 2001, Origins of life and evolution of the biosphere.

[93]  Fabio Mavelli,et al.  Autopoietic Self-Reproducing Vesicles: A Simplified Kinetic Model , 1996 .

[94]  S. Svetina,et al.  A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction , 2004, European Biophysics Journal.

[95]  Ehud Shapiro,et al.  Bringing DNA computers to life , 2006 .

[96]  J. Zasadzinski,et al.  The origins of stability of spontaneous vesicles. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Oberholzer,et al.  Giant Vesicles as Microreactors for Enzymatic mRNA Synthesis , 2002, Chembiochem : a European journal of chemical biology.

[98]  Roger Brent,et al.  A partnership between biology and engineering , 2004, Nature Biotechnology.

[99]  Eric Smith,et al.  Universality in intermediary metabolism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Pau Fernandez,et al.  The Role of Computation in Complex Regulatory Networks , 2003, q-bio/0311012.

[101]  John Maynard Smith,et al.  From replicators to reproducers: the first major transitions leading to life. , 1997, Journal of theoretical biology.

[102]  David J. Earl,et al.  Monte Carlo simulations. , 2008, Methods in molecular biology.

[103]  R. Waugh Elastic energy of curvature-driven bump formation on red blood cell membrane. , 1996, Biophysical journal.

[104]  Hiroshi Noguchi,et al.  Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation. , 2002, Biophysical journal.

[105]  Irene A Chen,et al.  A kinetic study of the growth of fatty acid vesicles. , 2004, Biophysical journal.

[106]  P. Luisi,et al.  The Use of Liposomes for Constructing Cell Models , 2002, Journal of biological physics.

[107]  Pier Luigi Luisi,et al.  The Notion of a DNA Minimal Cell: A General Discourse and Some Guidelines for an Experimental Approach , 2002 .

[108]  Pier Luigi Luisi,et al.  Growth and Transformation of Vesicles Studied by Ferritin Labeling and Cryotransmission Electron Microscopy , 2001 .

[109]  Javier Macía,et al.  Models of Protocell Replication , 2008 .

[110]  F. Mavelli,et al.  Monte Carlo Simulations of Vesicles and Fluid Membranes Transformations , 2004, Origins of life and evolution of the biosphere.

[111]  P. Luisi,et al.  Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. , 1995, Biochemical and biophysical research communications.

[112]  Mark Thomas Holtzapple,et al.  Foundations of Engineering , 1999 .

[113]  Pier Luigi Luisi,et al.  Autocatalytic self-replicating micelles as models for prebiotic structures , 1992, Nature.

[114]  Eörs Szathmáry,et al.  Evolutionary Potential and Requirements for Minimal Protocells , 2005 .