Discovery of quorum-sensing reprogramming determinants in Pseudomonas aeruginosa by a 1 novel experimental evolution approach 2

Abstract

[1]  Linfeng Huang,et al.  Spontaneous quorum-sensing hierarchy reprogramming in Pseudomonas aeruginosa laboratory strain PAO1 , 2022, AMB Express.

[2]  T. Coenye,et al.  RhlR-Regulated Acyl-Homoserine Lactone Quorum Sensing in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa , 2019, mBio.

[3]  X. Deng,et al.  An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa , 2019, Nature Communications.

[4]  E. Greenberg,et al.  Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy , 2019, Proceedings of the National Academy of Sciences.

[5]  Eric Déziel,et al.  Social cheating in a Pseudomonas aeruginosa quorum-sensing variant , 2019, Proceedings of the National Academy of Sciences.

[6]  L. Hoffman,et al.  LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa , 2016, mBio.

[7]  Bonnie L. Bassler,et al.  Quorum sensing signal–response systems in Gram-negative bacteria , 2016, Nature Reviews Microbiology.

[8]  Mark A. Eiteman,et al.  Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate , 2016, Applied Microbiology and Biotechnology.

[9]  M. Brockhurst,et al.  Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections , 2016, Trends in microbiology.

[10]  I. Patry,et al.  Amino Acid Substitutions Account for Most MexS Alterations in Clinical nfxC Mutants of Pseudomonas aeruginosa , 2016, Antimicrobial Agents and Chemotherapy.

[11]  Soyeon I Lippman,et al.  General and condition-specific essential functions of Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[12]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[13]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[14]  Jasmine Lee,et al.  The hierarchy quorum sensing network in Pseudomonas aeruginosa , 2014, Protein & Cell.

[15]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[16]  A. Zaborin,et al.  Emergence of the P2 Phenotype in Pseudomonas aeruginosa PAO1 Strains Involves Various Mutations in mexT or mexF , 2013, Journal of bacteriology.

[17]  D. Schneider,et al.  Evolutionary history and genetic parallelism affect correlated responses to evolution , 2013, Molecular ecology.

[18]  A. Zaborin,et al.  Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak , 2012, PloS one.

[19]  Eric Déziel,et al.  MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline) , 2011, PloS one.

[20]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[21]  F. O'Gara,et al.  Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa , 2009, Nucleic acids research.

[22]  F. O'Gara,et al.  MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. , 2009, Microbial pathogenesis.

[23]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[24]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[25]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[26]  A. Griffin,et al.  Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.

[27]  M. Schuster,et al.  Social cheating in Pseudomonas aeruginosa quorum sensing , 2007, Proceedings of the National Academy of Sciences.

[28]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Diggle,et al.  4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. , 2006, International journal of medical microbiology : IJMM.

[30]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[32]  K. Poole,et al.  Mutations in PA2491 (mexS) Promote MexT-Dependent mexEF-oprN Expression and Multidrug Resistance in a Clinical Strain of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[33]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[34]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Schweizer Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. , 2003, Genetics and molecular research : GMR.

[36]  K. Murakami,et al.  Role of the C-Terminal Domain of the Alpha Subunit of RNA Polymerase in LuxR-Dependent Transcriptional Activation of the lux Operon during Quorum Sensing , 2002, Journal of bacteriology.

[37]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[38]  H. Yoneyama,et al.  Assignment of the Substrate-Selective Subunits of the MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[39]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[40]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Köhler,et al.  Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[42]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[43]  K. Murakami,et al.  Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. , 1996, The EMBO journal.

[44]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[45]  C. Harwood,et al.  Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris , 1991 .

[46]  Eberhard Backus,et al.  Unanswered Questions. , 2017, Deutsches Arzteblatt international.

[47]  Rashmi Gupta Quorum sensing gene regulation in Pseudomonas aeruginosa , 2012 .

[48]  Samuel I. Miller,et al.  Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. , 2009, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[49]  H. Schweizer,et al.  mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.

[50]  R. Ebright,et al.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. , 1996, Genes & development.

[51]  Chunfang ZHANGt Pseudomonas aeruginosa. , 1966, Lancet.