Discovery of quorum-sensing reprogramming determinants in Pseudomonas aeruginosa by a 1 novel experimental evolution approach 2
暂无分享,去创建一个
C. Staehelin | Weijun Dai | Wen-Xuan Cai | Huiming Liao | MingQi Lu | Xiangting Zhou | Xiaoyan Cheng
[1] Linfeng Huang,et al. Spontaneous quorum-sensing hierarchy reprogramming in Pseudomonas aeruginosa laboratory strain PAO1 , 2022, AMB Express.
[2] T. Coenye,et al. RhlR-Regulated Acyl-Homoserine Lactone Quorum Sensing in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa , 2019, mBio.
[3] X. Deng,et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa , 2019, Nature Communications.
[4] E. Greenberg,et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy , 2019, Proceedings of the National Academy of Sciences.
[5] Eric Déziel,et al. Social cheating in a Pseudomonas aeruginosa quorum-sensing variant , 2019, Proceedings of the National Academy of Sciences.
[6] L. Hoffman,et al. LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa , 2016, mBio.
[7] Bonnie L. Bassler,et al. Quorum sensing signal–response systems in Gram-negative bacteria , 2016, Nature Reviews Microbiology.
[8] Mark A. Eiteman,et al. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate , 2016, Applied Microbiology and Biotechnology.
[9] M. Brockhurst,et al. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections , 2016, Trends in microbiology.
[10] I. Patry,et al. Amino Acid Substitutions Account for Most MexS Alterations in Clinical nfxC Mutants of Pseudomonas aeruginosa , 2016, Antimicrobial Agents and Chemotherapy.
[11] Soyeon I Lippman,et al. General and condition-specific essential functions of Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.
[12] Steven L Salzberg,et al. HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.
[13] W. Huber,et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.
[14] Jasmine Lee,et al. The hierarchy quorum sensing network in Pseudomonas aeruginosa , 2014, Protein & Cell.
[15] Paul Theodor Pyl,et al. HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.
[16] A. Zaborin,et al. Emergence of the P2 Phenotype in Pseudomonas aeruginosa PAO1 Strains Involves Various Mutations in mexT or mexF , 2013, Journal of bacteriology.
[17] D. Schneider,et al. Evolutionary history and genetic parallelism affect correlated responses to evolution , 2013, Molecular ecology.
[18] A. Zaborin,et al. Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak , 2012, PloS one.
[19] Eric Déziel,et al. MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline) , 2011, PloS one.
[20] Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .
[21] F. O'Gara,et al. Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa , 2009, Nucleic acids research.
[22] F. O'Gara,et al. MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. , 2009, Microbial pathogenesis.
[23] Nancy D. Hanson,et al. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.
[24] Gonçalo R. Abecasis,et al. The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..
[25] Richard Durbin,et al. Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .
[26] A. Griffin,et al. Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.
[27] M. Schuster,et al. Social cheating in Pseudomonas aeruginosa quorum sensing , 2007, Proceedings of the National Academy of Sciences.
[28] David A. D'Argenio,et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[29] S. Diggle,et al. 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. , 2006, International journal of medical microbiology : IJMM.
[30] J. Mekalanos,et al. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[31] J. Castle,et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.
[32] K. Poole,et al. Mutations in PA2491 (mexS) Promote MexT-Dependent mexEF-oprN Expression and Multidrug Resistance in a Clinical Strain of Pseudomonas aeruginosa , 2005, Journal of bacteriology.
[33] S. Lory,et al. A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.
[34] R. Tompkins,et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[35] H. Schweizer. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. , 2003, Genetics and molecular research : GMR.
[36] K. Murakami,et al. Role of the C-Terminal Domain of the Alpha Subunit of RNA Polymerase in LuxR-Dependent Transcriptional Activation of the lux Operon during Quorum Sensing , 2002, Journal of bacteriology.
[37] C. van Delden,et al. Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.
[38] H. Yoneyama,et al. Assignment of the Substrate-Selective Subunits of the MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.
[39] T. Köhler,et al. Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.
[40] E. Greenberg,et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[41] T. Köhler,et al. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.
[42] N. Gotoh,et al. Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.
[43] K. Murakami,et al. Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. , 1996, The EMBO journal.
[44] R. Lenski,et al. Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.
[45] C. Harwood,et al. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris , 1991 .
[46] Eberhard Backus,et al. Unanswered Questions. , 2017, Deutsches Arzteblatt international.
[47] Rashmi Gupta. Quorum sensing gene regulation in Pseudomonas aeruginosa , 2012 .
[48] Samuel I. Miller,et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. , 2009, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.
[49] H. Schweizer,et al. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.
[50] R. Ebright,et al. DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. , 1996, Genes & development.
[51] Chunfang ZHANGt. Pseudomonas aeruginosa. , 1966, Lancet.