Sentinel-1A - First precise orbit determination results

Sentinel-1A is the first satellite of the European Copernicus programme. Equipped with a Synthetic Aperture Radar (SAR) instrument the satellite was launched on April 3, 2014. Operational since October 2014 the satellite delivers valuable data for more than two years. The orbit accuracy requirements are given as 5 cm in 3D. In order to fulfill this stringent requirement the precise orbit determination (POD) is based on the dual-frequency GPS observations delivered by an eight-channel GPS receiver. The Copernicus POD (CPOD) Service is in charge of providing the orbital and auxiliary products required by the PDGS (Payload Data Ground Segment). External orbit validation is regularly performed by comparing the CPOD Service orbits to orbit solutions provided by POD expert members of the Copernicus POD Quality Working Group (QWG). The orbit comparisons revealed systematic orbit offsets mainly in radial direction (approx. 3 cm). Although no independent observation technique (e.g. DORIS, SLR) is available to validate the GPS-derived orbit solutions, comparisons between the different antenna phase center variations and different reduced-dynamic orbit determination approaches used in the various software packages helped to detect the cause of the systematic offset. An error in the given geometry information about the satellite has been found. After correction of the geometry the orbit validation shows a significant reduction of the radial offset to below 5 mm. The 5 cm orbit accuracy requirement in 3D is fulfilled according to the results of the orbit comparisons between the different orbit solutions from the QWG.

[1]  Pierre Féménias,et al.  Supporting the Copernicus POD Service , 2015 .

[2]  L. Jacchia Revised static models of the thermosphere and exosphere with empirical temperature profiles , 1971 .

[3]  H. Bock,et al.  Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite , 2011 .

[4]  Ulrich Meyer,et al.  Phase center modeling and its impact on LEO Precise Orbit Determination , 2009 .

[5]  O. Montenbruck,et al.  SWARM GPS Precise Orbit Determination Receiver Initial In-Orbit Performance Evaluation , 2014 .

[6]  Krzysztof Sośnica,et al.  Bernese GNSS Software , 2015 .

[7]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[8]  Tim Springer,et al.  Generating precise and homogeneous orbits for Jason-1 and Jason-2 , 2011 .

[9]  Pieter Visser,et al.  Precise science orbits for the Swarm satellite constellation , 2015 .

[10]  Oliver Montenbruck,et al.  Tracking and orbit determination performance of the GRAS instrument on MetOp-A , 2008 .

[11]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[12]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[13]  David W. Huffman Influence Time , 2008, Encyclopedia of GIS.

[14]  Gerhard Krieger,et al.  Total zero Doppler Steering-a new method for minimizing the Doppler centroid , 2005, IEEE Geoscience and Remote Sensing Letters.

[15]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[16]  J. Lemoine,et al.  The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C , 2008 .

[17]  R. Dach,et al.  CODE final product series for the IGS , 2016 .

[18]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[19]  Pierre Féménias,et al.  Copernicus POD Service Operations , 2015 .

[20]  Gerhard Beutler,et al.  Orbit determination for the GOCE satellite , 2009 .

[21]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[22]  H. Bock,et al.  GOCE: precise orbit determination for the entire mission , 2014, Journal of Geodesy.

[23]  R. Dach,et al.  Absolute IGS antenna phase center model igs08.atx: status and potential improvements , 2016, Journal of Geodesy.

[24]  A. Jäggi,et al.  The new combined satellite only model GOCO03s , 2012 .

[25]  U. Hugentobler,et al.  Pseudo-Stochastic Orbit Modeling Techniques for Low-Earth Orbiters , 2006 .

[26]  Mikael Ohgren,et al.  GNSS antenna for precise orbit determination including S/C interference predictions , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[27]  M. Rothacher,et al.  Kinematic and reduced-dynamic precise orbit determination of low earth orbiters , 2003 .

[28]  P. Femenias,et al.  Sentinels POD Service Operations , 2014 .

[29]  Oliver Montenbruck,et al.  Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination , 2009 .

[30]  Thomas P. Yunck,et al.  Reduced-dynamic technique for precise orbit determination of low earth satellites , 1991 .

[31]  Grant Hausler,et al.  The International GNSS Service , 2017 .

[32]  Josef Aschbacher,et al.  The European Earth monitoring (GMES) programme: Status and perspectives , 2012 .

[33]  Oliver Montenbruck,et al.  Reduced dynamic orbit determination using GPS code and carrier measurements , 2005 .

[34]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[35]  R. Dach,et al.  Bernese GNSS Software Version 5.2 , 2015 .

[36]  Sergei Rudenko,et al.  Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends , 2014 .