Practical Methods for Constructing Possibility Distributions

This survey paper provides an overview of existing methods for building possibility distributions. We both consider the case of qualitative possibility theory, where the scale remains ordinal, and the case of quantitative possibility theory, where the scale is the real interval [0, 1]. Methods may be order‐based or similarity‐based for qualitative possibility distributions, whereas statistical methods apply in the quantitative case and then possibilities encode nested random epistemic sets or upper bounds of probabilities. But distance‐based approaches, or expert estimates, may be also exploited in the quantitative case.

[1]  S. Moral,et al.  On the concept of possibility-probability consistency , 1987 .

[2]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[3]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[4]  Judea Pearl,et al.  Qualitative Probabilities for Default Reasoning, Belief Revision, and Causal Modeling , 1996, Artif. Intell..

[5]  R. E. Machol,et al.  Confidence interval based on single observation , 1966 .

[6]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[7]  Thierry Marchant,et al.  The measurement of membership by subjective ratio estimation , 2004, Fuzzy Sets Syst..

[8]  Giulianella Coletti,et al.  Coherent Conditional Probability as a Measure of Uncertainty of the Relevant Conditioning Events , 2003, ECSQARU.

[9]  Didier Dubois,et al.  Ordinal and Probabilistic Representations of Acceptance , 2004, J. Artif. Intell. Res..

[10]  Didier Dubois,et al.  A Framework for Iterated Belief Revision Using Possibilistic Counterparts to Jeffrey's Rule , 2010, Fundam. Informaticae.

[11]  I. Turksen,et al.  Measurement of Membership Functions: Theoretical and Empirical Work , 2000 .

[12]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Inés Couso,et al.  The necessity of the strong a-cuts of a fuzzy set , 2001 .

[15]  Gilles Mauris,et al.  Inferring a Possibility Distribution from Very Few Measurements , 2008, SMPS.

[16]  D. Dubois,et al.  Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms , 1983 .

[17]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[18]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[19]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[20]  Cliff Joslyn,et al.  MEASUREMENT OF POSSIBILISTIC HISTOGRAMS FROM INTERVAL DATA , 1997 .

[21]  Didier Dubois,et al.  Unifying practical uncertainty representations. II: Clouds , 2008, Int. J. Approx. Reason..

[22]  Didier Dubois,et al.  New Semantics for Quantitative Possibility Theory , 2001, ECSQARU.

[23]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[24]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[25]  Didier Dubois,et al.  A definition of subjective possibility , 2008, Int. J. Approx. Reason..

[26]  Didier Dubois,et al.  Fuzzy set and possibility theory-based methods in artificial intelligence , 2003, Artif. Intell..

[27]  A. L. PRUF a meaning representation language for natural languages , 2008 .

[28]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[29]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[30]  Didier Dubois,et al.  The logical view of conditioning and its application to possibility and evidence theories , 1990, Int. J. Approx. Reason..

[31]  Didier Dubois,et al.  Practical Handling of Exception-Tainted Rules and Independence Information in Possibilistic Logic , 1998, Applied Intelligence.

[32]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[33]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[34]  Ronald R. Yager Fuzzy set and possibility theory : recent developments , 1982 .

[35]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[36]  Thomas Schiex,et al.  Penalty Logic and its Link with Dempster-Shafer Theory , 1994, UAI.

[37]  Gilles Mauris,et al.  Possibility distributions: A unified representation of usual direct-probability-based parameter estimation methods , 2011, Int. J. Approx. Reason..

[38]  Mikel Aickin,et al.  Connecting Dempster–Shafer Belief Functions with Likelihood-based Inference , 2000, Synthese.

[39]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[40]  G. L. S. Shackle,et al.  Expectation in Economics , 1951 .

[41]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[42]  G. L. S. Shackle,et al.  Expectation in Economics , 1951 .

[43]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[44]  D. Dubois,et al.  A Semantics for Possibility Theory Based on Likelihoods , 1997 .

[45]  Lotfi A. Zadeh,et al.  A note on similarity-based definitions of possibility and probability , 2014, Inf. Sci..

[46]  Gilles Mauris,et al.  A Review of Relationships Between Possibility and Probability Representations of Uncertainty in Measurement , 2013, IEEE Transactions on Instrumentation and Measurement.

[47]  Didier Dubois,et al.  Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables: An Introduction for Ph.D. Students and Practitioners , 2014 .

[48]  G. L. S. Shackle The Expectational Dynamics of the Individual , 1943 .

[49]  Wolfgang Spohn,et al.  The Laws of Belief - Ranking Theory and Its Philosophical Applications , 2012 .

[50]  Wolfgang Spohn,et al.  A general non-probabilistic theory of inductive reasoning , 2013, UAI.

[51]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[52]  L. Shapley A Value for n-person Games , 1988 .

[53]  Patrick Bosc,et al.  Fuzzy Preference Queries to Relational Databases , 2012 .

[54]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[55]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..

[56]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[57]  Didier Dubois,et al.  Formal Representations of Uncertainty , 2010, Decision-making Process.

[58]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[59]  Didier Dubois,et al.  An overview of the asymmetric bipolar representation of positive and negative information in possibility theory , 2009, Fuzzy Sets Syst..

[60]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[61]  L. M. D. Campos,et al.  MEASUREMENT OF POSSIBILITY DISTRIBUTIONS , 2001 .

[62]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[63]  Thierry Denoeux,et al.  Inferring a possibility distribution from empirical data , 2006, Fuzzy Sets Syst..

[64]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[65]  Gert de Cooman,et al.  A behavioral model for linguistic uncertainty , 2001, Inf. Sci..

[66]  Monika Eisenhower Fuzzy Preference Queries To Relational Databases , 2016 .

[67]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[68]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[69]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[70]  R. Yager An introduction to applications of possibility theory (+ commentaries by L.A. Zadeh, W. Bandler, T. Saaty, A. Kandel, D. Dubois & H. Prade, R.M. Tong and M. Kochen) , 1982 .

[71]  Didier Dubois,et al.  Statistical reasoning with set-valued information: Ontic vs. epistemic views , 2014, Int. J. Approx. Reason..

[72]  Didier Dubois,et al.  Possibility Theory and Its Applications: Where Do We Stand? , 2015, Handbook of Computational Intelligence.

[73]  Thierry Marchant,et al.  The measurement of membership by comparisons , 2004, Fuzzy Sets Syst..

[74]  Eyke Hüllermeier,et al.  Comparing probability measures using possibility theory: A notion of relative peakedness , 2007, Int. J. Approx. Reason..

[75]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[76]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[77]  Vladik Kreinovich,et al.  Exact Bounds on Finite Populations of Interval Data , 2005, Reliab. Comput..

[78]  Steven Schockaert,et al.  Solving conflicts in information merging by a flexible interpretation of atomic propositions , 2011, Artif. Intell..

[79]  David Lewis Counterfactuals and Comparative Possibility , 1973 .

[80]  Didier Dubois,et al.  Knowledge-Driven versus Data-Driven Logics , 2000, J. Log. Lang. Inf..

[81]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[82]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[83]  D. Dubois,et al.  Fuzzy sets and statistical data , 1986 .

[84]  Didier Dubois,et al.  Practical representations of incomplete probabilistic knowledge , 2006, Comput. Stat. Data Anal..

[85]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .