Logic-based schedulability analysis for compositional hard real-time embedded systems

Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for misinterpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.

[1]  Steve Goddard,et al.  Predictable Runtime Monitoring , 2009, 2009 21st Euromicro Conference on Real-Time Systems.

[2]  Wang Yi,et al.  UPPAAL 4.0 , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[3]  Wang Yi,et al.  Task automata: Schedulability, decidability and undecidability , 2007, Inf. Comput..

[4]  François Bobot,et al.  Why3: Shepherd Your Herd of Provers , 2011 .

[5]  Wang Yi,et al.  Multi-processor Schedulability Analysis of Preemptive Real-Time Tasks with Variable Execution Times , 2007, FORMATS.

[6]  Kang G. Shin,et al.  Analysis of Event-Driven Real-Time Systems with Time Petri Nets: A Translation-Based Approach , 2002, DIPES.

[7]  Chung Laung Liu,et al.  Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment , 1989, JACM.

[8]  Wang Yi,et al.  Decidable and Undecidable Problems in Schedulability Analysis Using Timed Automata , 2004, TACAS.

[9]  Wang Yi,et al.  Schedulability analysis of fixed-priority systems using timed automata , 2006, Theor. Comput. Sci..

[10]  Colin J. Fidge,et al.  Real-Time Schedulability Tests for Preemptive Multitasking , 2004, Real-Time Systems.

[11]  Alan Burns,et al.  An engineering process for the verification of real-time systems , 2007, Formal Aspects of Computing.

[12]  Insup Lee,et al.  A Process Algebraic Framework for Modeling Resource Demand and Supply , 2010, FORMATS.

[13]  Wang Yi,et al.  Timed Automata with Asynchronous Processes: Schedulability and Decidability , 2002, TACAS.

[14]  Alan Burns,et al.  Fixed priority pre-emptive scheduling: An historical perspective , 1995, Real-Time Systems.

[15]  Duncan Clarke,et al.  A Process Algebraic Approach to the Schedulability Analysis of Real-Time Systems , 1998, Real-Time Systems.

[16]  K. Rustan M. Leino,et al.  BoogiePL: A typed procedural language for checking object-oriented programs , 2005 .

[17]  Thierry Jéron,et al.  Runtime enforcement of timed properties. (Enforcement à l'éxécution de propriétés temporisées) , 2012, RV.

[18]  Insup Lee,et al.  Compositional real-time scheduling framework with periodic model , 2008, TECS.

[19]  Insup Lee,et al.  Periodic resource model for compositional real-time guarantees , 2003, RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003.

[20]  Jeffrey J. P. Tsai,et al.  Timing Constraint Petri Nets and Their Application to Schedulability Analysis of Real-Time System Specifications , 1995, IEEE Trans. Software Eng..

[21]  Jozef Hooman,et al.  Metric Temporal Logic with Durations , 1995, Theor. Comput. Sci..

[22]  Alwyn E. Goodloe,et al.  Copilot: A Hard Real-Time Runtime Monitor , 2010, RV.

[23]  Fausto Giunchiglia,et al.  NUSMV: a new symbolic model checker , 2000, International Journal on Software Tools for Technology Transfer.

[24]  Steve Goddard,et al.  Selecting Server Parameters for Predictable Runtime Monitoring , 2010, 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium.

[25]  Stephan Merz,et al.  Model Checking , 2000 .

[26]  John P. Lehoczky,et al.  The rate monotonic scheduling algorithm: exact characterization and average case behavior , 1989, [1989] Proceedings. Real-Time Systems Symposium.