Position Estimation from UWB Pseudorange and Angle-of-Arrival: A Comparison of Non-linear Regression and Kalman Filtering

This paper presents two algorithms, non-linear regression and Kalman filtering, that fuse heterogeneous data (pseudorange and angle-of-arrival) from an ultra-wideband positioning system. The performance of both the algorithms is evaluated using real data from two deployments, for both static and dynamic scenarios. We also consider the effectiveness of the proposed algorithms for systems with reduced infrastructure (lower deployment density), and for lower-complexity sensing platforms which are only capable of providing either pseudorange or angle-of-arrival.

[1]  Rudy R. Negenborn,et al.  Robot Localization and Kalman Filters , 2003 .

[2]  Hari Balakrishnan,et al.  Tracking moving devices with the cricket location system , 2004, MobiSys '04.

[3]  B. Merminod,et al.  Optimal data fusion for pedestrian navigation based on UWB and MEMS , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[4]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[5]  J. Barney,et al.  Commercialization of an ultra wideband precision asset location system , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[6]  S. Glantz Primer of applied regression and analysis of variance / Stanton A. Glantz, Bryan K. Slinker , 1990 .

[7]  Henk L. Muller,et al.  Autocalibration algorithm for ultrasonic location systems , 2003, Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings..

[8]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[9]  Robert J. Fontana Experimental Results from an Ultra Wideband Precision Geolocation System , 2002 .

[10]  Uwe Hansmann,et al.  Pervasive Computing , 2003 .

[11]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[12]  James Scott,et al.  Audio Location: Accurate Low-Cost Location Sensing , 2005, Pervasive.

[13]  Greg Welch,et al.  The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments , 1999, VRST '99.

[14]  Andrew Martin Robert Ward,et al.  Sensor-driven computing , 1999 .

[15]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[16]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[17]  Michael Harrington,et al.  Constellation: a wide-range wireless motion-tracking system for augmented reality and virtual set applications , 1998, SIGGRAPH.

[18]  S. Glantz,et al.  Primer of Applied Regression & Analysis of Variance , 1990 .

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.