Construction of orders in Abelian groups
暂无分享,去创建一个
Let G be an Abelian group. A binary relation ≥ denned in G is called an order of G if for each x, y, z e G , (i) x ≥ y or y ≥ x (and hence x ≥ x ); (ii) x ≥ y and y ≥ x ⇒ x = y , (if x ≥ y and x ≠ y , we write x > y ); (iii) x ≥ y and y ≥ z ⇒ x = z ; (iv) z ≥ y ⇒ x + z ≥ y + z .
[1] R. Baer. The Subgroup of the Elements of Finite Order of an Abelian Group , 1936 .
[2] A. G. Kurosh,et al. The theory of groups , 2014 .
[3] A. H. Clifford,et al. Note on Hahn’s theorem on ordered abelian groups , 1954 .
[4] K. Gravett,et al. VALUED LINEAR SPACES , 1955 .
[5] K. Gravett. ORDERED ABELIAN GROUPS , 1956 .