Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements

[1]  F. W. Williams,et al.  AN APPROACH TO THE NON-LINEAR BEHAVIOUR OF THE MEMBERS OF A RIGID JOINTED PLANE FRAMEWORK WITH FINITE DEFLECTIONS , 1964 .

[2]  Alan Jennings,et al.  Frame Analysis including Change of Geometry , 1968 .

[3]  C. Oran Tangent Stiffness in Plane Frames , 1973 .

[4]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[5]  Sundaramoorthy Rajasekaran,et al.  Incremental Finite Element Matrices , 1973 .

[6]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[7]  D. W. Scharpf,et al.  On the geometrical stiffness of a beam in space—a consistent V.W. approach , 1979 .

[8]  Morris Ojalvo,et al.  Wagner Hypothesis in Beam and Column Theory , 1981 .

[9]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[10]  Nicholas S. Trahair Discussion of Wagner Hypothesis in Beam and Column Theory by Morris Ojalvo , 1982 .

[11]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[12]  K. Mattiasson,et al.  On the Accuracy and Efficiency of Numerical Algorithms for Geometrically Nonlinear Structural Analysis , 1986 .

[13]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[14]  John F. Abel,et al.  Convected systems for curved structural elements , 1987 .

[15]  Alexander Chajes,et al.  Nonlinear Frame Analysis by Finite Element Methods , 1987 .

[16]  John F. Abel,et al.  Equilibrium considerations of the updated Lagrangian formulation of beam‐columns with natural concepts , 1987 .

[17]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[18]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[19]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[20]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[21]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[22]  Z. Bažant,et al.  Stability Of Structures , 1991 .

[23]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[24]  George E. Blandford,et al.  Closure of "Thin-Walled Space Frames. I: Large-Deformation Analysis Theory" , 1991 .

[25]  Aura Conci,et al.  Large displacement analysis of thin-walled beams with generic open section , 1992 .

[26]  Atef F. Saleeb,et al.  Effective modelling of spatial buckling of beam assemblages, accounting for warping constraints and rotation-dependency of moments , 1992 .

[27]  Nicholas S. Trahair,et al.  Flexural-Torsional Buckling of Structures , 1993 .

[28]  Zhi Hua Zhou,et al.  Pointwise Equilibrating Polynomial Element for Nonlinear Analysis of Frames , 1994 .

[29]  Yeong-Bin Yang,et al.  Non-linear stiffnesses in analysis of planar frames , 1994 .

[30]  M. J. Clarke,et al.  Co-Rotational and Lagrangian Formulations for Elastic Spatial Beam elements , 1996 .

[31]  M. J. Clarke,et al.  New Definition of Conservative Internal Moments in Space Frames , 1999 .