Translational control: recognition of the methylated 5' end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNAfMet.

Structural analogs of the methylated 5' end (cap) of eukaryotic mRNA, such as 7-methylguanosine 5'-monophosphate, specifically inhibit both GTP-dependent binding of Met-tRNAfMet and binding of globin mRNA to eukaryotic initiation factor 2 (eIF-2). Addition of purified eIF-2 effectively relieves the cap analog-induced inhibition of globin mRNA translation. The analog competitively inhibits the function of eIF-2 and of mRNA in protein synthesis. Binding to eIF-2 of capped mRNA as well as noncapped mRNA, such as Mengo virus RNA, can be inhibited completely by free cap molecules, but much more cap is needed to inhibit binding of Mengo virus RNA. mRNA, whether or not it is capped, competitively inhibits the binding of Met-tRNAfMet to eIF-2. These results provide compelling evidence that eIF-2 recognizes mRNA. It is shown that binding of mRNA to eIF-2 is primarily at an internal sequence, and secondarily through the cap. A model for the function of eIF-2 is presented that can account for all these properties. This model can provide a molecular basis for the differential translation of mRNA species, whether or not they are capped.