Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line

This paper presents a theoretical model and validates experimentally the microwave slow-wave transmission line (SW-TL) based on spoof surface plasmon (SSP) modes. Equivalent circuit models are first presented for characterizing the SSP structures and developed to serve as an insightful guideline to design the SW-TL at a given cutoff frequency and Bloch impedance. A mode converter connecting a conventional microstrip transmission line to the SW-TL is necessarily proposed to ensure that the quasi-TEM modes of the microstrip line are gradually transformed to the operating TM modes of the SW-TL. The presented schematic of SW-TL paves a promising avenue for the unprecedented interconnector footprint miniaturization of integrated circuits, and the enhanced electromagnetic compatibility, for example, in multilayered monolithic microwave integrated circuits.

[1]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[2]  Tie Jun Cui,et al.  Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. , 2014, Optics express.

[3]  W. Marsden I and J , 2012 .

[4]  Tie Jun Cui,et al.  Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies , 2013 .

[5]  Tie Jun Cui,et al.  Conformal surface plasmons propagating on ultrathin and flexible films , 2012, Proceedings of the National Academy of Sciences.

[6]  L Martin-Moreno,et al.  Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. , 2011, Optics letters.

[7]  Chahe Nerguizian,et al.  Wideband planar Goubau line integrated circuit components at millimetre waves , 2011 .

[8]  B. Bocquet,et al.  Corrugated Goubau Lines to Slow Down and Confine THz Waves , 2012, IEEE Transactions on Terahertz Science and Technology.

[9]  G. Goubau,et al.  Open Wire Lines , 1956 .

[10]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[11]  A. Bacon,et al.  Crosstalk between finite ground coplanar waveguides over polyimide layers for 3-D MMICs on Si substrates , 2004, IEEE Transactions on Microwave Theory and Techniques.

[12]  B. Bocquet,et al.  Planar excitation of Goubau Transmission Lines for THz BioMEMS , 2005, IEEE Microwave and Wireless Components Letters.

[13]  B. Baron,et al.  Self inductance of long conductor of rectangular cross section , 2012 .

[14]  Ke Chen,et al.  Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. , 2014, Optics express.

[15]  Miguel Ferrando-Bataller,et al.  Periodic Leaky-Wave Antenna on Planar Goubau Line at Millimeter-Wave Frequencies , 2013, IEEE Antennas and Wireless Propagation Letters.

[16]  D. Pozar Microwave Engineering , 1990 .

[17]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[18]  Marjorie Grzeskowiak,et al.  A low-loss planar goubau line and a coplanar-PGL transition on high-resistivity silicon substrate in the 57–64 GHz band , 2012 .

[19]  Tahsin Akalin,et al.  Plasmonic waveguides and metamaterial components at terahertz frequencies , 2009, 2009 Asia Pacific Microwave Conference.

[20]  J.-F. Lampin,et al.  THz long range plasmonic waveguide in membrane topology , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[21]  Yongjiu Zhao,et al.  Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films , 2014 .

[22]  B. Bocquet,et al.  Single-wire transmission lines at terahertz frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[23]  Francisco Falcone,et al.  Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. , 2009, Optics express.

[24]  Mario Sorolla,et al.  Enhancing the Dual-Band Guiding Capabilities of Coaxial Spoof Plasmons via use of Transmission Line Concepts , 2011 .

[25]  Ajay Nahata,et al.  Terahertz plasmonic waveguides created via 3D printing. , 2013, Optics express.

[26]  Tie Jun Cui,et al.  An ultra-wideband surface plasmonic filter in microwave frequency , 2014 .

[27]  Qiang Cheng,et al.  Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons , 2014 .

[28]  Tian Jiang,et al.  High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. , 2013, Optics express.