Non-amenable Cayley graphs of high girth have $p_c < p_u$ and mean-field exponents

In this note we show that percolation on non-amenable Cayley graphs of high girth has a phase of non-uniqueness, i.e., $p_c< p_u$. Furthermore, we show that percolation and self-avoiding walk on such graphs have mean-field critical exponents. In particular, the self-avoiding walk has positive speed.

[1]  A. Akhmedov The girth of groups satisfying Tits Alternative , 2005 .

[2]  A Lower Bound for the End-to-End Distance of the Self-Avoiding Walk , 2014, Canadian Mathematical Bulletin.

[3]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[4]  Roberto H. Schonmann,et al.  Multiplicity of Phase Transitions and Mean-Field Criticality on Highly Non-Amenable Graphs , 2001 .

[5]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[6]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[7]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[8]  Roberto H. Schonmann Mean-Field Criticality for Percolation on Planar Non-Amenable Graphs , 2002 .

[9]  H. Duminil-Copin,et al.  Self-Avoiding Walk is Sub-Ballistic , 2012, 1205.0401.

[10]  k-Free-like groups , 2008, 0811.1607.

[11]  I. Benjamini,et al.  Percolation in the hyperbolic plane , 1999, math/9912233.

[12]  Y. Peres,et al.  Is the critical percolation probability local? , 2009, 0901.4616.

[13]  Jean Picard,et al.  The Lace Expansion and its Applications , 2006 .

[14]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[15]  Uniqueness and Non-uniqueness in Percolation Theory , 2006, math/0612812.

[16]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[17]  Gordon Slade,et al.  Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .

[18]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[19]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[20]  Neal Madras,et al.  Self-Avoiding Walks on Hyperbolic Graphs , 2005, Combinatorics, Probability and Computing.

[21]  Igor Pak,et al.  On non-uniqueness of percolation on nonamenable Cayley graphs * , 2000 .

[22]  Thomas Spencer,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .