The supersymmetric t - J model with a boundary

An open supersymmetric t - J chain with boundary fields is studied by means of the Bethe ansatz. Ground state properties for the case of an almost half-filled band and a bulk magnetic field are determined. Boundary susceptibilities are calculated as functions of the boundary fields. The effects of the boundary on excitations are investigated by constructing the exact boundary S-matrix. From the analytic structure of the boundary S-matrices one deduces that holons can form boundary bound states for sufficiently strong boundary fields.

[1]  H. Asakawa,et al.  Finite-Size Corrections in the Supersymmetric t–J Model with Boundary Fields , 1997 .

[2]  Jóhannesson,et al.  Kondo effect in a Luttinger liquid: Exact results from conformal field theory. , 1995, Physical review letters.

[3]  Tsvelik,et al.  Anisotropic spin-1/2 Heisenberg chain with open boundary conditions. , 1995, Physical review. B, Condensed matter.

[4]  A. Tsvelik Existence of low-temperature critical regime in a one-dimensional Luttinger liquid with a weak link , 1995, cond-mat/9502022.

[5]  H. Vega,et al.  Unified approach to Thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories , 1994, hep-th/9407117.

[6]  Rafael I. Nepomechie,et al.  Direct calculation of the boundary S-matrix for the open Heisenberg chain , 1994, hep-th/9407089.

[7]  P. Fendley,et al.  Deriving boundary S matrices , 1994, hep-th/9402045.

[8]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[9]  V. Korepin,et al.  Exact solution of an electronic model of superconductivity , 1992, cond-mat/9211001.

[10]  A. Foerster,et al.  The supersymmetric t- J model with quantum group invariance , 1993 .

[11]  V. Korepin,et al.  SU(2) × SU(2)-invariant scattering matrix of the Hubbard model , 1993, cond-mat/9310056.

[12]  V. Korepin,et al.  Spectrum of Low-Lying Excitations in a Supersymmetric Extended Hubbard Model , 1993, cond-mat/9307019.

[13]  A. Foerster,et al.  Algebraic properties of the Bethe ansatz for an spl(2,1)-supersymmetric t- J model , 1993 .

[14]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions: The Algebraic Bethe Ansatz and Asymptotics of Correlation Functions , 1993 .

[15]  Carmelo,et al.  Charge-spin recombination in the one-dimensional supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.

[16]  Korepin,et al.  Higher conservation laws and algebraic Bethe Ansa-umltze for the supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.

[17]  Fisher,et al.  Resonant tunneling in an interacting one-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[18]  Rafael I. Nepomechie,et al.  Fusion procedure for open chains , 1992 .

[19]  Ogata,et al.  Exact solution of the t-J model in one dimension at 2t=+/-J: Ground state and excitation spectrum. , 1991, Physical review. B, Condensed matter.

[20]  S. Sarkar The supersymmetric t - J model in one dimension , 1991 .

[21]  Frahm,et al.  Correlation functions of the one-dimensional Hubbard model in a magnetic field. , 1991, Physical review. B, Condensed matter.

[22]  Takahashi Correlation length and free energy of the S=1/2 XYZ chain. , 1991, Physical review. B, Condensed matter.

[23]  Rafael I. Nepomechie,et al.  Integrable open spin chains with nonsymmetric R-matrices , 1991 .

[24]  H. Frahm,et al.  Finite-size effects in the integrable XXZ Heisenberg model with arbitrary spin , 1990 .

[25]  F. Woynarovich Finite-size effects in a non-half-filled Hubbard chain , 1989 .

[26]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[27]  R. Lathe Phd by thesis , 1988, Nature.

[28]  R. Baxter,et al.  Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models , 1987 .

[29]  G. Quispel,et al.  Conformal anomaly and surface energy for Potts and Ashkin-Teller quantum chains , 1987 .

[30]  P. Schlottmann,et al.  Integrable narrow-band model with possible relevance to heavy-fermion systems. , 1987, Physical review. B, Condensed matter.

[31]  T. Koma Thermal Bethe-Ansatz Method for the One-Dimensional Heisenberg Model , 1987 .

[32]  J. Chayes,et al.  The phase boundary in dilute and random Ising and Potts ferromagnets , 1987 .

[33]  F. Woynarovich,et al.  Finite-size corrections and numerical calculations for long spin 1/2 Heisenberg chains in the critical region , 1987 .

[34]  H. Schulz Hubbard chain with reflecting ends , 1985 .

[35]  J. Cardy,et al.  Conformal Invariance and Surface Critical Behavior , 1984 .

[36]  I. Cherednik Factorizing particles on a half-line and root systems , 1984 .

[37]  N. Andrei,et al.  Dynamical symmetry breaking and fractionization in a new integrable model , 1984 .

[38]  L. Faddeev,et al.  Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model , 1984 .

[39]  A. M. Tsvelick,et al.  Exact results in the theory of magnetic alloys , 1983 .

[40]  J. Lowenstein,et al.  Solution of the Kondo problem , 1983 .

[41]  J. Lowenstein,et al.  A direct calculation of the S-matrix of the chiral invariant gross-neveu model☆ , 1980 .

[42]  B. Sutherland Model for a multicomponent quantum system , 1975 .

[43]  C. Yang,et al.  Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction , 1969 .

[44]  N. S. Barnett,et al.  Private communication , 1969 .

[45]  Chen Ning Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System , 1966 .