Geometric output tracking of nonlinear distributed parameter systems via adaptive model reduction

Abstract We focus on the output tracking problem of distributed parameter systems (DPSs) which can be described by a set of nonlinear dissipative partial differential equations (PDEs). The infinite-dimensional modal representation of such systems in appropriate subspaces can be decomposed to finite-dimensional slow and probably unstable, and infinite-dimensional fast and stable subsystems. Taking advantage of this decomposition, adaptive model reduction techniques and specifically adaptive proper orthogonal decomposition (APOD) can be used for the recursive construction of locally accurate low dimensional reduced order models (ROMs). The proposed geometric APOD-based control structure is the combination of a nonlinear Luenberger-like geometric dynamic observer and a globally linearizing controller (GLC) designed for tracking the desired output. The proposed geometric control approach is successfully illustrated on the output tracking of target thermal dynamics for a catalytic reactor. Specifically, the geometric output tracking strategy is used to reduce the hot spot temperature and manage the thermal energy distribution through reactor length during process evolution with limited number of actuators and sensors.

[1]  C. Kravaris,et al.  Geometric methods for nonlinear process control. 1. Background , 1990 .

[2]  Davood Babaei Pourkargar,et al.  Feedback control of linear distributed parameter systems via adaptive model reduction in the presence of device network communication constraints , 2014, 2014 American Control Conference.

[3]  Antonios Armaou,et al.  Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions , 2001 .

[4]  G. Froment,et al.  Parametric sensitivity and runaway in fixed bed catalytic reactors , 1970 .

[5]  Miroslav Krstic,et al.  On control design for PDEs with space-dependent diffusivity or time-dependent reactivity , 2005, Autom..

[6]  Michael A. Demetriou,et al.  Compensation of spatiotemporally varying disturbances in nonlinear transport processes via actuator scheduling , 2004 .

[7]  Antonios Armaou,et al.  Dynamic online nonlinear robust detection and accommodation of incipient component faults for nonlinear dissipative distributed processes , 2012 .

[8]  Lino O. Santos,et al.  A robust multi-model predictive controller for distributed parameter systems , 2012 .

[9]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[10]  Ruth F. Curtain,et al.  Robust stabilization of infinite dimensional systems by finite dimensional controllers , 1986 .

[11]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[12]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[13]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[14]  Jean-Paul Gauthier,et al.  H∞-control of a distributed parameter system with non-minimum phase , 1991 .

[15]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[16]  A. Armaou,et al.  Design of APOD-based switching dynamic observers and output feedback control for a class of nonlinear distributed parameter systems , 2015 .

[17]  Davood Babaei Pourkargar,et al.  Control of dissipative partial differential equation systems using APOD based dynamic observer designs , 2013, 2013 American Control Conference.

[18]  P. Christofides,et al.  Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control , 2000 .

[19]  Antonios Armaou,et al.  Output Feedback Control of Distributed Parameter Systems Using Adaptive Proper Orthogonal Decomposition , 2010 .

[20]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[21]  Costas Kravaris,et al.  Geometric methods for nonlinear process control. 2. Controller synthesis , 1990 .

[22]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[23]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[24]  Massimiliano Barolo,et al.  Geometric observer for a distillation column : Development and experimental testing , 2005 .

[25]  I. Lasiecka Control of systems governed by partial differential equations: a historical perspective , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[26]  Michael A. Demetriou,et al.  Model Reference Adaptive Control of Distributed Parameter Systems , 1998 .

[27]  Antonios Armaou,et al.  Nonlinear Feedback Control of Parabolic Partial Differential Equation Systems with Time-dependent Spatial Domains , 1999 .

[28]  J. Alvarez Nonlinear state estimation with robust convergence , 2000 .

[29]  Christopher I. Byrnes,et al.  Global Lyapunov stabilization of a nonlinear distributed parameter system , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[30]  Antonios Armaou,et al.  Nonlinear feedback control of parabolic PDE systems with time-dependent spatial domains , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[31]  Bernard Friedland,et al.  Control System Design: An Introduction to State-Space Methods , 1987 .

[32]  Prodromos Daoutidis,et al.  Control of hot spots in plug flow reactors , 2002 .

[33]  Miroslav Krstic,et al.  Control of an unstable reaction-diffusion PDE with long input delay , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[34]  R. Curtain Invariance concepts in infinite dimensions , 1986 .

[35]  Antonios Armaou,et al.  Feedback control of dissipative PDE systems using adaptive model reduction , 2009 .

[36]  Jesus Alvarez,et al.  Robust dynamic state estimation of nonlinear plants , 1999 .

[37]  A. Isidori Nonlinear Control Systems , 1985 .

[38]  Stevan Dubljevic,et al.  Order‐reduction of parabolic PDEs with time‐varying domain using empirical eigenfunctions , 2013 .

[39]  Frédéric Vogel,et al.  Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization , 2007 .

[40]  Davood Babaei Pourkargar,et al.  Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients , 2013 .

[41]  M. Balas FEEDBACK CONTROL OF LINEAR DIFFUSION PROCESSES , 1979 .

[42]  Miroslav Krstic,et al.  Infinite Dimensional Backstepping-Style Feedback Transformations for a Heat Equation with an Arbitrary Level of Instability , 2002, Eur. J. Control.