NONSTATIONARITY-EXTENDED WHITTLE ESTIMATION

For long memory time series models with uncorrelated but dependent errors, we establish the asymptotic normality of the Whittle estimator under mild conditions. Our framework includes the widely used fractional autoregressive integrated moving average models with generalized autoregressive conditional heteroskedastic-type innovations. To cover nonstationary fractionally integrated processes, we extend the idea of Abadir, Distaso, and Giraitis (2007, Journal of Econometrics 141, 1353–1384) and develop the nonstationarity-extended Whittle estimation. The resulting estimator is shown to be asymptotically normal and is more efficient than the tapered Whittle estimator. Finally, the results from a small simulation study are presented to corroborate our theoretical findings.

[1]  Masanobu Taniguchi,et al.  On estimation of the integrals of the fourth order cumulant spectral density , 1982 .

[2]  X. Shao,et al.  Asymptotic spectral theory for nonlinear time series , 2006, math/0611029.

[3]  P. Robinson Time Series with Long Memory , 2003 .

[4]  M. Taqqu,et al.  Whittle estimator for finite-variance non-Gaussian time series with long memory , 1999 .

[5]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[6]  Weighted Least Squares Estimators on the Frequency Domain for the Parameters of a Time Series , 1988 .

[7]  Y. Tse,et al.  Forecasting the Nikkei spot index with fractional cointegration , 1999 .

[8]  Paolo Zaffaroni,et al.  Gaussian inference on certain long-range dependent volatility models , 2003 .

[9]  Siem Jan Koopman,et al.  Periodic Seasonal Reg-ARFIMA–GARCH Models for Daily Electricity Spot Prices , 2007 .

[10]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[11]  Domenico Marinucci,et al.  Alternative forms of fractional Brownian motion , 1998 .

[12]  Liudas Giraitis,et al.  WHITTLE ESTIMATION OF ARCH MODELS , 2000, Econometric Theory.

[13]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[14]  P. Robinson,et al.  Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series , 2000 .

[15]  L. Márkus,et al.  A long range dependent model with nonlinear innovations for simulating daily river flows , 2004 .

[16]  Wei Biao Wu,et al.  LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION FOR NONLINEAR PROCESSES , 2007, Econometric Theory.

[17]  R. Cox,et al.  Journal of the Royal Statistical Society B , 1972 .

[18]  E. J. Hannan,et al.  Central limit theorems for time series regression , 1973 .

[19]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[20]  P. Phillips,et al.  Local Whittle estimation in nonstationary and unit root cases , 2004, math/0406462.

[21]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[22]  Peter C. B. Phillips,et al.  Local Whittle estimation of fractional integration and some of its variants , 2006 .

[23]  P. Robinson,et al.  The distance between rival nonstationary fractional processes , 2004 .

[24]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[25]  James Davidson,et al.  Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model , 2004 .

[26]  Daniel M. Keenan,et al.  Limiting Behavior of Functionals of Higher-Order Sample Cumulant Spectra , 1987 .

[27]  A. M. Walker Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series , 1964, Journal of the Australian Mathematical Society.

[28]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[29]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[30]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[31]  Wai Keung Li,et al.  On Fractionally Integrated Autoregressive Moving-Average Time Series Models with Conditional Heteroscedasticity , 1997 .

[32]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[34]  Laura Mayoral,et al.  Minimum Distance Estimation of Stationary and Non-Stationary ARFIMA Processes , 2007 .

[35]  E. Hannan The asymptotic theory of linear time-series models , 1973, Journal of Applied Probability.

[36]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[37]  Liudas Giraitis,et al.  Nonstationarity-Extended Local Whittle Estimation , 2006 .

[38]  D. Surgailis,et al.  A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate , 1990 .

[39]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[40]  Jan Beran,et al.  Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .

[41]  Robert M. Kunst,et al.  Fractionally Integrated Models With ARCH Errors: With an Application to the Swiss 1-Month Euromarket Interest Rate , 1998 .

[42]  W. Wu,et al.  On linear processes with dependent innovations , 2005 .

[43]  Robert M. Kunst,et al.  Forecasting High-Frequency Financial Data with the ARFIMA-ARCH Model , 2001 .

[44]  Wei Biao Wu,et al.  Limit theorems for iterated random functions , 2004, Journal of Applied Probability.

[45]  P. Phillips Discrete Fourier Transforms of Fractional Processes , 1999 .

[46]  D. Surgailis,et al.  ARCH-type bilinear models with double long memory , 2002 .

[47]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[48]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[49]  Michael McAleer,et al.  NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS , 2002, Econometric Theory.

[50]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .