The Quest for Transitivity, a Showcase of Fuzzy Relational Calculus

We present several relational frameworks for expressing similarities and preferences in a quantitative way. The main focus is on the occurrence of various types of transitivity in these frameworks. The first framework is that of fuzzy relations; the corresponding notion of transitivity is C-transitivity, with C a conjunctor. We discuss two approaches to the measurement of similarity of fuzzy sets: a logical approach based on biresidual operators and a cardinal approach based on fuzzy set cardinalities. The second framework is that of reciprocal relations; the corresponding notion of transitivity is cycle-transitivity. It plays a crucial role in the description of different types of transitivity arising in the comparison of (artificially coupled) random variables in terms of winning probabilities. It also embraces the study of mutual rank probability relations of partially ordered sets.

[1]  B. Baets Similarity of Fuzzy Sets and Dominance of Random Variables: a Quest for Transitivity , 2008 .

[2]  B. Baets,et al.  Extreme Copulas and the Comparison of Ordered Lists , 2007 .

[3]  Bernhard Moser,et al.  On Representing and Generating Kernels by Fuzzy Equivalence Relations , 2006, J. Mach. Learn. Res..

[4]  Bernard De Baets,et al.  On the cycle-transitivity of the mutual rank probability relation of a poset , 2010, Fuzzy Sets Syst..

[5]  Bernard De Baets,et al.  Transitivity-preserving fuzzification schemes for cardinality-based similarity measures , 2005, Eur. J. Oper. Res..

[6]  Rudolf Kruse,et al.  Preferences and Similarities , 2008 .

[7]  Bernard De Baets,et al.  Exploiting the Lattice of Ideals Representation of a Poset , 2006, Fundam. Informaticae.

[8]  Bernard De Baets,et al.  Toward Graded and Nongraded Variants of Stochastic Dominance , 2007, Perception-based Data Mining and Decision Making in Economics and Finance.

[9]  Alberto Bugarín,et al.  Soft Methods for Integrated Uncertainty Modelling , 2006 .

[10]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[11]  Bernard De Baets,et al.  Bell-type inequalities for quasi-copulas , 2004, Fuzzy Sets Syst..

[12]  Rainer Brüggemann,et al.  Estimation of Averaged Ranks by a Local Partial Order Model , 2004, J. Chem. Inf. Model..

[13]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[14]  Bernard De Baets,et al.  Graded Stochastic Dominance as a Tool for Ranking the Elements of a Poset , 2006, SMPS.

[15]  Bernard De Baets,et al.  Meta-theorems on inequalities for scalar fuzzy set cardinalities , 2006, Fuzzy Sets Syst..

[16]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[17]  Bernard De Baets,et al.  Cyclic Evaluation of Transitivity of Reciprocal Relations , 2006, Soc. Choice Welf..

[18]  B. Baets,et al.  Metrics and T-Equalities , 2002 .

[19]  B. Baets,et al.  Support vector machine regression for the prediction of maize hybrid performance , 2007, Theoretical and Applied Genetics.

[20]  Bernard Monjardet,et al.  A Generalisation of Probabilistic Consistency: Linearity Conditions for Valued Preference Relations , 1988 .

[21]  H. A. David,et al.  The method of paired comparisons , 1966 .

[22]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[23]  Tetsuzo Tanino,et al.  Fuzzy Preference Relations in Group Decision Making , 1988 .

[24]  B. De Baets,et al.  On the transitivity of the comonotonic and countermonotonic comparison of random variables , 2007 .

[25]  C. J. Hearne Non-conventional Preference Relations in Decision Making , 1989 .

[26]  Ildar Batyrshin,et al.  Perception-based Data Mining and Decision Making in Economics and Finance , 2007, Studies in Computational Intelligence.

[27]  R. Nelsen An Introduction to Copulas , 1998 .

[28]  Bernard De Baets,et al.  Bell-type inequalities for parametric families of triangular norms , 2004, Kybernetika.

[29]  Bernard De Baets,et al.  Approximation of average ranks in posets , 2011 .

[30]  B. De Baets,et al.  On the Cycle-Transitivity of the Dice Model , 2003 .

[31]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[32]  P. Fishburn Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .

[33]  B. Baets,et al.  Pseudo-metrics and T-equivalences , 1997 .

[34]  Zbigniew Switalski,et al.  General transitivity conditions for fuzzy reciprocal preference matrices , 2003, Fuzzy Sets Syst..

[35]  Rainer Brüggemann,et al.  A hitchhiker's guide to poset ranking. , 2008, Combinatorial chemistry & high throughput screening.

[36]  B. De Baets,et al.  On a conjecture about the Frank copula family , 2013, Fuzzy Sets Syst..

[37]  Zbigniew Switalski,et al.  Transitivity of fuzzy preference relations - an empirical study , 2001, Fuzzy Sets Syst..

[38]  B. De Baets,et al.  Cycle-transitive comparison of independent random variables , 2005 .

[39]  Bernard De Baets,et al.  Algorithms for computing the min-transitive closure and associated partition tree of a symmetric fuzzy relation , 2004, Eur. J. Oper. Res..

[40]  Yang Yu On Proportional Transitivity of Ordered Sets , 1998 .

[41]  Bernard De Baets,et al.  T -partitions , 1998 .

[42]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[43]  Christian Genest,et al.  A Characterization of Quasi-copulas , 1999 .

[44]  B. De Baets,et al.  A class of rational cardinality-based similarity measures , 2001 .

[45]  Bernard De Baets,et al.  On the cycle-transitive comparison of artificially coupled random variables , 2008, Int. J. Approx. Reason..

[46]  Bernard De Baets,et al.  On the transitivity of a parametric family of cardinality-based similarity measures , 2009, Int. J. Approx. Reason..

[47]  Bart D'Hooghe,et al.  Bell-type inequalities in fuzzy probability calculus , 2001 .

[48]  Jeff Kahn,et al.  Log-Concave Functions And Poset Probabilities , 1998, Comb..

[49]  Peter C. Fishburn Proportional transitivity in linear extensions of ordered sets , 1986, J. Comb. Theory, Ser. B.

[50]  B. De Baets,et al.  Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity , 2005, Fuzzy Sets Syst..

[51]  D J Rogers,et al.  A Computer Program for Classifying Plants. , 1960, Science.